Bill Joy - Why the Future Doesn't Need Us
Why the Future Doesn’t Need Us
By Bill Joy 2000.4.1
Why the Future Doesn’t Need Us | WIRED
译文来自网络,仅供参考
From the moment I became involved in the creation of new technologies, their ethical dimensions have concerned me, but it was only in the autumn of 1998 that I became anxiously aware of how great are the dangers facing us in the 21st century. I can date the onset of my unease to the day I met Ray Kurzweil, the deservedly famous inventor of the first reading machine for the blind and many other amazing things.
自从我从事科技创造的那一刻起,我就关注其在伦理上的问题。但直到1998年秋天我才认识到我们在21世纪面临着多大的危险。这一不安始于我遇到雷·库茨维尔, 一位伟大的发明家,发明了为盲人服务的阅读机,还有许多不可思议的机器。
Ray and I were both speakers at George Gilder’s Telecosm conference, and I encountered him by chance in the bar of the hotel after both our sessions were over. I was sitting with John Searle, a Berkeley philosopher who studies consciousness. While we were talking, Ray approached and a conversation began, the subject of which haunts me to this day.
我和雷都是在佐治亚州Gilder市召开的远程通讯大会的发言者。会议结束后,我在旅店酒吧与他偶遇。当时我正在与John Searle,一位在加州大学佰克利分校研究意识问题的哲学家,坐在一起聊天。雷走过来与我们攀谈起来。直至今日,我们谈论的内容依然困扰着我。
I had missed Ray’s talk and the subsequent panel that Ray and John had been on, and they now picked right up where they’d left off, with Ray saying that the rate of improvement of technology was going to accelerate and that we were going to become robots or fuse with robots or something like that, and John countering that this couldn’t happen, because the robots couldn’t be conscious.
我没有听到雷的演讲及其后来的座谈,而约翰没有,他们现在重拾未完的话题。雷认为技术进步的速度将会越来越快,我们将会成为机器人或者与机器人结合的合成人,或者与之类似的东西。但约翰不以为然,他认为这不可能发生,因为机器人不会有意识。
While I had heard such talk before, I had always felt sentient robots were in the realm of science fiction. But now, from someone I respected, I was hearing a strong argument that they were a near-term possibility. I was taken aback, especially given Ray’s proven ability to imagine and create the future. I already knew that new technologies like genetic engineering and nanotechnology were giving us the power to remake the world, but a realistic and imminent scenario for intelligent robots surprised me.
在听到这样的谈话之前,我一直认为有感觉的机器人只存在于科幻小说中。但现在,从一些值得尊重的人那里,我知道了那些机器人已经离我们不远了。我大吃一惊,特别是我知道雷已经证明自己有资格有能力描绘并创造出这一未来。我现在已经知道新科技,比如基因工程、纳米技术,能帮助我们重新改造这个世界,但智能机器人的现状与未来使我感到惊奇。
It’s easy to get jaded about such breakthroughs. We hear in the news almost every day of some kind of technological or scientific advance. Yet this was no ordinary prediction. In the hotel bar, Ray gave me a partial preprint of his then-forthcoming book The Age of Spiritual Machines, which outlined a utopia he foresaw—one in which humans gained near immortality by becoming one with robotic technology. On reading it, my sense of unease only intensified; I felt sure he had to be understating the dangers, understating the probability of a bad outcome along this path.
诸如此类的技术突破会使人厌倦。我们几乎每天都能听到关于科技进步的新闻。但这次可不是一般的预言。在旅店的酒吧里,雷给了我一本他即将出版的新书《智能机器的时代》的预印本。他在这本书中勾勒出了他心目中的乌托邦:通过机器人技术,人类将会得到几乎永生不灭的生命。在阅读这本书时,我心中的不安越来越强烈。我敢肯定,雷低估了机器人技术的危险性,低估了这一技术造成严重后果的可能性。
I found myself most troubled by a passage detailing a dystopian scenario:
我发现以下反乌托邦情景让自己寝食难安:
The New Luddite Challenge
新卢德主义的挑战
First let us postulate that the computer scientists succeed in developing intelligent machines that can do all things better than human beings can do them. In that case presumably all work will be done by vast, highly organized systems of machines and no human effort will be necessary. Either of two cases might occur. The machines might be permitted to make all of their own decisions without human oversight, or else human control over the machines might be retained.
首先让我们假定计算机科学家开发出了比人类更能干的智能机器。在这种情况下,所有的工作将由大量组织良好的机器系统完成,而人类不再需要进行劳动。我们可能会充许机器自主地作出决定,或者人们依然保留对机器的控制。这两种情况都有可能发生。
If the machines are permitted to make all their own decisions, we can’t make any conjectures as to the results, because it is impossible to guess how such machines might behave. We only point out that the fate of the human race would be at the mercy of the machines. It might be argued that the human race would never be foolish enough to hand over all the power to the machines. But we are suggesting neither that the human race would voluntarily turn power over to the machines nor that the machines would willfully seize power. What we do suggest is that the human race might easily permit itself to drift into a position of such dependence on the machines that it would have no practical choice but to accept all of the machines’ decisions. As society and the problems that face it become more and more complex and machines become more and more intelligent, people will let machines make more of their decisions for them, simply because machine-made decisions will bring better results than man-made ones. Eventually a stage may be reached at which the decisions necessary to keep the system running will be so complex that human beings will be incapable of making them intelligently. At that stage the machines will be in effective control. People won’t be able to just turn the machines off, because they will be so dependent on them that turning them off would amount to suicide.
如果充许机器自主运行,由于我们不可能猜测出机器是如何得出结论的,所以也就无法推测这一结果。我们将会发现人类的命运将掌握在机器手中。也许有人会争论说人类不会愚蠢到把所有的权力移交给机器,但我们正在谈论的即不是人类把权力让度给机器,也不是机器有意攫取权力。我们谈论的是人类很容易陷入不得不接受机器的自主决定,从而依赖机器生存的境地。随着社会及其面对的问题越来越复杂,并且机器的智能越来越高,人类将让机器作出越来越重要的决定,不为其他,只是机器作出的决定要比人类明智得多。最终,由于保持系统正常运行的决策是如此复杂,人类的智能再也无法承担,而机器却能胜任愉快。人们再也无法简单地拨掉机器的电源,因为我们是如此依赖机器,关机无异于自杀!
On the other hand it is possible that human control over the machines may be retained. In that case the average man may have control over certain private machines of his own, such as his car or his personal computer, but control over large systems of machines will be in the hands of a tiny elite—just as it is today, but with two differences. Due to improved techniques the elite will have greater control over the masses; and because human work will no longer be necessary the masses will be superfluous, a useless burden on the system. If the elite is ruthless they may simply decide to exterminate the mass of humanity. If they are humane they may use propaganda or other psychological or biological techniques to reduce the birth rate until the mass of humanity becomes extinct, leaving the world to the elite. Or, if the elite consists of soft-hearted liberals, they may decide to play the role of good shepherds to the rest of the human race. They will see to it that everyone’s physical needs are satisfied, that all children are raised under psychologically hygienic conditions, that everyone has a wholesome hobby to keep him busy, and that anyone who may become dissatisfied undergoes “treatment” to cure his “problem.” Of course, life will be so purposeless that people will have to be biologically or psychologically engineered either to remove their need for the power process or make them “sublimate” their drive for power into some harmless hobby. These engineered human beings may be happy in such a society, but they will most certainly not be free. They will have been reduced to the status of domestic animals. 1
另一方面,人类保持对机器的控制是有可能的。比如,在上面所说的情况下,相当部分的人仍然控制私人拥有的机器,象汽车、个人电脑之类。但控制大型机器系统的是极少数精英阶层,就象当今社会一样。但与现在相比有两点不同:由于科技进步,精英阶层对广大群众有了更大的控制权,并且由于人类劳动不再是必需的,广大群众也变成了整个系统无用而多余的负担。如果精英阶层是冷酷无情的,他们可能会简单地把这些人消灭殆尽。如果他们是仁慈的,可能会用宣传或其他精神上、生物上的技术来降低人口出生率,直至这些人灭绝,从而完全拥有这个世界。还有另外一种可能性,如果精英阶层是软心肠的自由主义者,他们可能会扮演牧羊人的角色来照顾其余的人类。他们将会满足每个人肉体上的需要,让孩子们健康地成长,每个人都会忙于有益身心健康的爱好,任何对此不满意的人都会受到“特殊照顾”以纠正他们的“问题”。当然,生命是如此没有意义,以至人们不得不接受生物或精神上的改造以去除他们对权力的欲望,或者使之“升华”成无害的嗜好。这些经过改造的人类在这样的社会中也许会感到快乐,但他们肯定是不自由的,他们就像动物园中被饲养的动物。
In the book, you don’t discover until you turn the page that the author of this passage is Theodore Kaczynski—the Unabomber. I am no apologist for Kaczynski. His bombs killed three people during a 17-year terror campaign and wounded many others. One of his bombs gravely injured my friend David Gelernter, one of the most brilliant and visionary computer scientists of our time. Like many of my colleagues, I felt that I could easily have been the Unabomber’s next target.
直到你读到这一页,你才发现以上内容的作者是是卡辛斯基,著名的“大学炸弹客”。我并不是卡辛斯基的辩护者。在他17年的恐怖活动中,用炸弹夺走了3个人的生命,还炸伤了很多人。其中一枚炸弹使我的朋友戴维-Gelernter严重受伤,戴维是我们这个时代最具天才与想象力的计算机科学家。就象我的很多同事一样,我感到我很有可能就是“大学炸弹客”的下一个袭击目标。
Kaczynski’s actions were murderous and, in my view, criminally insane. He is clearly a Luddite, but simply saying this does not dismiss his argument; as difficult as it is for me to acknowledge, I saw some merit in the reasoning in this single passage. I felt compelled to confront it.
卡辛斯基的行为是谋杀和愚蠢的罪行,毫无疑问,在我眼中他是个卢德主义者,但简单地下此结论难以驳倒他的观点。虽然很难,但在上面一段论述中,我还是察觉到了一些真相,我感到我有责任来面对它。
Kaczynski’s dystopian vision describes unintended consequences, a well-known problem with the design and use of technology, and one that is clearly related to Murphy’s law—“Anything that can go wrong, will.” (Actually, this is Finagle’s law, which in itself shows that Finagle was right.) Our overuse of antibiotics has led to what may be the biggest such problem so far: the emergence of antibiotic-resistant and much more dangerous bacteria. Similar things happened when attempts to eliminate malarial mosquitoes using DDT caused them to acquire DDT resistance; malarial parasites likewise acquired multi-drug-resistant genes. 2
我们不希望卡辛斯基想象的反乌托邦成为现实,但一个众所周知的关于设计与技术应用的问题可以用“墨菲定律”来描述:“会出错的,终将会出错”(事实上,应当称之为菲纳络定律,这一错误本身就证明了菲格纳真是英明无比!)抗生素的过度使用已经造成最严重的问题:抗生素耐药性危机和越来越多的危险细菌。与之类似的事情曾经发生过:想用DDT杀死传播虐疾的蚊子,却使之产生DDT耐药性,其幼虫也获得了对多种药物的耐药性基因。
The cause of many such surprises seems clear: The systems involved are complex, involving interaction among and feedback between many parts. Any changes to such a system will cascade in ways that are difficult to predict; this is especially true when human actions are involved.
诸如此类令人惊奇的事故清楚地表明:系统各部分相互之间的作用与反馈太过复杂,对系统的改变会引起连锁反应,难以预料最终结果。特别是把人类的活动也考虑进来后,情况就越发复杂了。
I started showing friends the Kaczynski quote from The Age of Spiritual Machines; I would hand them Kurzweil’s book, let them read the quote, and then watch their reaction as they discovered who had written it. At around the same time, I found Hans Moravec’s book Robot: Mere Machine to Transcendent Mind. Moravec is one of the leaders in robotics research, and was a founder of the world’s largest robotics research program, at Carnegie Mellon University. Robot gave me more material to try out on my friends—material surprisingly supportive of Kaczynski’s argument. For example:
我开始向朋友们介绍《智能机器的时代》一书对对卡辛斯基言论的引用;我递给他们卡辛斯基的书,让他们阅读这些引文,然后观察当他们发现是谁写下这些文字时的反应。大约在这一段时间,我发现了汉斯-莫拉维克的《机器人:通往非凡思维的纯粹机器》。莫拉维克是机器人研究领域的领军人物,他在卡耐基-梅隆大学创立并领导着世界上最大的机器人研究计划。这本书给了我更多的材料来考验我的朋友们。令人惊奇的是,那些材料大多支持卡辛斯基的论调。例如:
The Short Run (Early 2000s)
“近期(2000年早期)”
Biological species almost never survive encounters with superior competitors. Ten million years ago, South and North America were separated by a sunken Panama isthmus. South America, like Australia today, was populated by marsupial mammals, including pouched equivalents of rats, deers, and tigers. When the isthmus connecting North and South America rose, it took only a few thousand years for the northern placental species, with slightly more effective metabolisms and reproductive and nervous systems, to displace and eliminate almost all the southern marsupials.
生物物种在遭遇到占优势的竞争者时几乎毫无生存的机会。一千万年以前,南北美洲被巴拿马地峡分开。南美洲就象今天的澳大利亚,到处繁衍着有袋类哺乳动物,有袋鼠、袋鹿和袋虎等等。当连接南北美洲的地峡升起后,北方在新陈代谢与神经系统上只占很少优势的胎生物种只用了几千年的时间就替换并灭绝了几乎所有的南方有袋类物种。
In a completely free marketplace, superior robots would surely affect humans as North American placentals affected South American marsupials (and as humans have affected countless species). Robotic industries would compete vigorously among themselves for matter, energy, and space, incidentally driving their price beyond human reach. Unable to afford the necessities of life, biological humans would be squeezed out of existence.
在完全自由竞争的市场上,占优势的机器人就会象北美胎生物种影响有南美有袋类物种一样影响人类的生存(也好象人类曾经影响无数其他物种一样)。机器人工业将会为了原材料、能源和空间展开激烈的竞争,其结果就是机器人的经济性超过人类。由于无法负担生活所需,人类将会被排挤出生存空间。
There is probably some breathing room, because we do not live in a completely free marketplace. Government coerces nonmarket behavior, especially by collecting taxes. Judiciously applied, governmental coercion could support human populations in high style on the fruits of robot labor, perhaps for a long while.
可能还有可能给人类留下喘息的空间,因为我们并不是生活在一个完全自由竞争的市场中。政府会强制执行一些非市场化政策,特别是税收。通过这一明智之举,政府的强制措施能支持人类在机器人劳动成果的基础以一种较高的生存状态繁衍生息。这一情况可能会持续很长时间。
A textbook dystopia—and Moravec is just getting wound up. He goes on to discuss how our main job in the 21st century will be “ensuring continued cooperation from the robot industries” by passing laws decreeing that they be “nice,” and to describe how seriously dangerous a human can be “once transformed into an unbounded superintelligent robot.” 3 Moravec’s view is that the robots will eventually succeed us—that humans clearly face extinction.
这真是一本反乌托邦的生动教材,并且会让莫洛维克感到很不舒服。他继续讨论我们在21世纪的主要是:“制定法律来规范机器人工业的行为,确保与其持续的合作”。并描述了“一旦人类转变为毫无约束的超级智能机器人”会产生多么严重危险。在莫洛维克的观点里,机器人最终会战胜我们,人类毫无疑问将面结灭绝的命运。
I decided it was time to talk to my friend Danny Hillis. Danny became famous as the cofounder of Thinking Machines Corporation, which built a very powerful parallel supercomputer. Despite my current job title of Chief Scientist at Sun Microsystems, I am more a computer architect than a scientist, and I respect Danny’s knowledge of the information and physical sciences more than that of any other single person I know. Danny is also a highly regarded futurist who thinks long-term—four years ago he started the Long Now Foundation, which is building a clock designed to last 10,000 years, in an attempt to draw attention to the pitifully short attention span of our society. (See “Test of Time,” Wired 8.03.)
我决定在此时此刻与我的朋友丹尼•希里斯(Dany Hillis)好好谈一谈。丹尼是生产并行超级计算机的ThinkingMachines公司的创始人之一。我不光是太阳微系统公司的首席科学家,同时也是一个计算机设计者。丹尼在信息和物理科学方面的知识超过我认识的每一个人。丹尼还是一位值得关注的未来学家,他对未来进行了很长时间的思考,并在四年前创立了Long Now Foundation,他还为过去10000年制造了一台时钟,尝试刻画出人类历史上值得纪念的时间段(见“Test of Time”《时间测试》,《连线》2003年8月78页)。
So I flew to Los Angeles for the express purpose of having dinner with Danny and his wife, Pati. I went through my now-familiar routine, trotting out the ideas and passages that I found so disturbing. Danny’s answer—directed specifically at Kurzweil’s scenario of humans merging with robots—came swiftly, and quite surprised me. He said, simply, that the changes would come gradually, and that we would get used to them.
因此我飞到洛杉矶与丹尼夫妇共进午餐。我倾其所有,向丹尼提出了一些困扰我的想法我思路供其考虑。丹尼的回答直指库茨维尔设想的未来情景:人类与机器人合二为一的时代很快就会到来。这一回答令我大吃一惊。总而言之,他认为这一变化会逐渐成为现实,人们迟早对此会习以为常。
But I guess I wasn’t totally surprised. I had seen a quote from Danny in Kurzweil’s book in which he said, “I’m as fond of my body as anyone, but if I can be 200 with a body of silicon, I’ll take it.” It seemed that he was at peace with this process and its attendant risks, while I was not.
但我认为我没有完全地感到惊奇。我从丹尼那听到了对库茨维尔书中内容的引用。他说:“虽然我象别人一样喜爱自己身体,但是如果我能依靠硅基肉体活上200岁,我会毫不犹豫地放弃它。”看上去丹尼已经对一变化过程及随之而来的危险听天由命了,而我却不能。
While talking and thinking about Kurzweil, Kaczynski, and Moravec, I suddenly remembered a novel I had read almost 20 years ago -The White Plague, by Frank Herbert—in which a molecular biologist is driven insane by the senseless murder of his family. To seek revenge he constructs and disseminates a new and highly contagious plague that kills widely but selectively. (We’re lucky Kaczynski was a mathematician, not a molecular biologist.) I was also reminded of the Borg of Star Trek, a hive of partly biological, partly robotic creatures with a strong destructive streak. Borg-like disasters are a staple of science fiction, so why hadn’t I been more concerned about such robotic dystopias earlier? Why weren’t other people more concerned about these nightmarish scenarios?
当谈论与思考关于库茨维尔、卡辛斯基及莫洛维克的事情时,我突然想到了20多年前读过的一本弗兰克-赫伯特(Frank Herbert)的科幻小说《白色瘟役》(TheWhite Plague)。在小说中,一位分子生物学家因其父母妻儿被无原无故地谋杀而陷入疯狂。为了报复,他制造并散布了一种新研制的高度传染性的瘟役,用它来杀死很多经过选择的人(我们应当庆辛卡辛斯基只是个数学家,而不是分子生物学家)。我还记得《星际旅行》(StarTrek)中的博格人(Berg),一种具有毁灭倾向的半人半机械生物。类似博格人的灾难是科幻小说中经常出现的情节。这就是我为什么更早更关注这样的机器人反乌托邦的原因。为什么其他人不为这梦魇般的未来世界操一点心呢?
Part of the answer certainly lies in our attitude toward the new—in our bias toward instant familiarity and unquestioning acceptance. Accustomed to living with almost routine scientific breakthroughs, we have yet to come to terms with the fact that the most compelling 21st-century technologies—robotics, genetic engineering, and nanotechnology—pose a different threat than the technologies that have come before. Specifically, robots, engineered organisms, and nanobots share a dangerous amplifying factor: They can self-replicate. A bomb is blown up only once—but one bot can become many, and quickly get out of control.
这一问题的部分答案在于我们偏狭的劣根性:喜欢新奇的东西、马上就能上手的东西、毫无诫心地接受它们。习惯于每天听到的科技新发现。我们已经处于这样一个阶段:21世纪最引人注目的科技:机器人、基因工程和纳米技术,在其到来之前就已经表面出了与众不同的巨大威力,特别是机器人、经过基因工程改造过的有机体、纳米技术具有相同的使危险扩大的因素:它们能自我复制。一枚炸弹只能响一声,但一个机器人能就自我复制成很多个,很快就会失去控制。
Much of my work over the past 25 years has been on computer networking, where the sending and receiving of messages creates the opportunity for out-of-control replication. But while replication in a computer or a computer network can be a nuisance, at worst it disables a machine or takes down a network or network service. Uncontrolled self-replication in these newer technologies runs a much greater risk: a risk of substantial damage in the physical world.
在过去25年中,我的大部分工作是计算机网络研究。在网络上发送与接收信息会造成失控复制。虽然计算机或计算机网络上的失控复制很讨厌,但是在最坏情况下也不过是使单台计算机无法正常工作或阻塞网络通讯、网络服务。而那些更新科技产品的失控自我复制会造成更大危险:它们会损害到物理世界。
Each of these technologies also offers untold promise: The vision of near immortality that Kurzweil sees in his robot dreams drives us forward; genetic engineering may soon provide treatments, if not outright cures, for most diseases; and nanotechnology and nanomedicine can address yet more ills. Together they could significantly extend our average life span and improve the quality of our lives. Yet, with each of these technologies, a sequence of small, individually sensible advances leads to an accumulation of great power and, concomitantly, great danger.
这些科技都提出了数不清的美好承诺:库茨维尔在其机器人梦想中看到的近乎长生不老的前景激励我们不断前进,基因工程很快就能为大多数不能很快痊愈的疾病提供了治疗方法;纳米技术和纳米医疗能治愈更多疾病。所有这一切将会极大提高我们的平均寿命及生活质量。然而,对于其中任何一项技术,持续不断地微小、个别的进行会积累成威力巨大的力量及其伴随而来的巨大的危险。
What was different in the 20th century? Certainly, the technologies underlying the weapons of mass destruction (WMD)—nuclear, biological, and chemical (NBC)—were powerful, and the weapons an enormous threat. But building nuclear weapons required, at least for a time, access to both rare—indeed, effectively unavailable—raw materials and highly protected information; biological and chemical weapons programs also tended to require large-scale activities.
20世纪有何与众不同?当然,产生大规模杀伤性武器(WMD)核武器、生物武器、化学武器的科技极具威力,并且这些武器具有巨大的威胁性。但建造核武器至少需要时间、稀少、事实上不可能得到的原材料以及高度保密的资料;生物武器和化学武器的研制也需要开展大规模的活动。
The 21st-century technologies—genetics, nanotechnology, and robotics (GNR)—are so powerful that they can spawn whole new classes of accidents and abuses. Most dangerously, for the first time, these accidents and abuses are widely within the reach of individuals or small groups. They will not require large facilities or rare raw materials. Knowledge alone will enable the use of them.
而21世纪的技术-基因工程、纳米技术和机器人(GNR)的威力是如此巨大,它们会孕育出新的事故及滥用方式。最危险的是,这些事故与滥用首先会在个人或小型组织就能企及的能力范围内。它们不需要巨大的开发能力或稀少的原材料,只要有相关技术知识就能利用它们。
Thus we have the possibility not just of weapons of mass destruction but of knowledge-enabled mass destruction (KMD), this destructiveness hugely amplified by the power of self-replication.
因此,我们不光受到大规模杀伤性武器的威胁,还有技术知识产生的大规模杀伤力,它们的自我复制能力极大地扩展了其杀伤力。
I think it is no exaggeration to say we are on the cusp of the further perfection of extreme evil, an evil whose possibility spreads well beyond that which weapons of mass destruction bequeathed to the nation-states, on to a surprising and terrible empowerment of extreme individuals.
我想以下所说绝对不是危言耸听:我们人类面临产生极端邪恶的最高可能性,这一邪恶的产生正由国家力量支持的大规模杀伤性武器转而到恐怖的极端个人。
Nothing about the way I got involved with computers suggested to me that I was going to be facing these kinds of issues.
没有什么指出我们将面对这样的问题。
My life has been driven by a deep need to ask questions and find answers. When I was 3, I was already reading, so my father took me to the elementary school, where I sat on the principal’s lap and read him a story. I started school early, later skipped a grade, and escaped into books—I was incredibly motivated to learn. I asked lots of questions, often driving adults to distraction.
我的生命被内心深处的热情驱使着提出问题、找寻答案。当我3岁时,我已经开始阅读,所以我的父亲把我送进了小学,我那时只能坐在校长的腿上听他讲故事。我很早就开始上学。然后跳级,我以难于置信的热情投入到书本之中进行学习。我提出了很多让大人们都很难解决的问题。
As a teenager I was very interested in science and technology. I wanted to be a ham radio operator but didn’t have the money to buy the equipment. Ham radio was the Internet of its time: very addictive, and quite solitary. Money issues aside, my mother put her foot down—I was not to be a ham; I was antisocial enough already.
作为一个十多岁的少年,我对科技技术非常着迷。我希望成为一名“火腿”(业余无线电爱好者),但我没有钱买设备。“火腿”是那个时代的因特网,非常容易上瘾,也使人离群索居。暂且不论有没有钱,我母亲马上表示坚决反对,我不能成为一名“火腿”,因为我已经够孤僻的啦!
I may not have had many close friends, but I was awash in ideas. By high school, I had discovered the great science fiction writers. I remember especially Heinlein’s Have Spacesuit Will Travel and Asimov’s I, Robot, with its Three Laws of Robotics. I was enchanted by the descriptions of space travel, and wanted to have a telescope to look at the stars; since I had no money to buy or make one, I checked books on telescope-making out of the library and read about making them instead. I soared in my imagination.
那时我没有什么亲密的朋友,但我沉醉在我丰富的想像之中。我中学时代,我发现了许多伟大的科幻小说家。特别是我仍然记得Heinlein的《穿着太空服去旅行》(Have Spacesuit with Travel)和阿西莫夫的《我,机器人》及其机器人三原则。我被关于太空旅行的描写深深迷住了,就想拥有一架望远镜来看一看天上的星星;由于我没有钱买或制作一架,我就从图书馆借来关于如何制造望远镜的书,通过阅读来安慰自己。我在想像的空间中自由翱翔。
Thursday nights my parents went bowling, and we kids stayed home alone. It was the night of Gene Roddenberry’s original Star Trek, and the program made a big impression on me. I came to accept its notion that humans had a future in space, Western-style, with big heroes and adventures. Roddenberry’s vision of the centuries to come was one with strong moral values, embodied in codes like the Prime Directive: to not interfere in the development of less technologically advanced civilizations. This had an incredible appeal to me; ethical humans, not robots, dominated this future, and I took Roddenberry’s dream as part of my own.
星期四晚上我的父母会出去打保龄球。而我们这些小孩独自待在家中。星期四晚上是 吉恩-罗顿巴里(Gene Roddenberry)最初的《星际旅行》(Star Trek)播出的时间,这个节目给我留下了深刻的印象。我开始接受这样一种理念:人类未来将在太空进行西部英雄式的冒险。罗顿巴里描绘的几个世纪后的情景有着重要的道德价值:遵守“第一守则”,不要干预任何技术水平较低的文明的发展。这些对我有着不可否认的吸引力;是精英人类,而不是机器人会支配我们的未来。罗顿巴里梦想成为我生命中不可或缺的一部分。
I excelled in mathematics in high school, and when I went to the University of Michigan as an undergraduate engineering student I took the advanced curriculum of the mathematics majors. Solving math problems was an exciting challenge, but when I discovered computers I found something much more interesting: a machine into which you could put a program that attempted to solve a problem, after which the machine quickly checked the solution. The computer had a clear notion of correct and incorrect, true and false. Were my ideas correct? The machine could tell me. This was very seductive.
高中时我的数学相当不错,并且在密歇根大学工程专业读书时,我已经学习了研究生的高等数学课程。解决数学问题是一种令人兴奋的挑战,但当我发现了计算机以后,我觉得它更加吸引我:你能把用以解决某个问题的程序放入到一台机器里,然后这台机器很快就能判断出你的解决方案是否正确。计算机的答案非常清楚:正确或错误、真或假。我的想法正确吗?机器会告诉你一切。这真是太吸引人了!
I was lucky enough to get a job programming early supercomputers and discovered the amazing power of large machines to numerically simulate advanced designs. When I went to graduate school at UC Berkeley in the mid-1970s, I started staying up late, often all night, inventing new worlds inside the machines. Solving problems. Writing the code that argued so strongly to be written.
我非常幸运地得到了一个在早期超级计算机上编程的工作。我发现大型计算机在对复杂设计方案进行数字化模拟方面有着不可思议的威力。当我在70年代中期到加州大学伯克利分校上研究生时,我开始在机房里待很长时间,常常是通宵达旦。我在计算机中发现了一个新世界,我在里面解决各种问题,编写被认为是很难的写出的代码。
In The Agony and the Ecstasy, Irving Stone’s biographical novel of Michelangelo, Stone described vividly how Michelangelo released the statues from the stone, “breaking the marble spell,” carving from the images in his mind. 4 In my most ecstatic moments, the software in the computer emerged in the same way. Once I had imagined it in my mind I felt that it was already there in the machine, waiting to be released. Staying up all night seemed a small price to pay to free it—to give the ideas concrete form.
在欧文·斯通(Irving Stone)为米开朗基罗写的传记小说《痛苦与狂喜》中,斯通生动地描写了米开朗基罗是如何从石头中解放出了雕像,“破除石化咒语”,依照心灵的指引切开巨石。在我大多数狂喜的瞬间,计算机中的软件也是如此完成。我曾经在我的心中这样描述:我感到那些软件已经“封印”在机器中,等待着我为它们破除咒语。而夙兴夜寐的辛劳与此相比不值一提。
After a few years at Berkeley I started to send out some of the software I had written—an instructional Pascal system, Unix utilities, and a text editor called vi (which is still, to my surprise, widely used more than 20 years later)—to others who had similar small PDP-11 and VAX minicomputers. These adventures in software eventually turned into the Berkeley version of the Unix operating system, which became a personal “success disaster”—so many people wanted it that I never finished my PhD. Instead I got a job working for Darpa putting Berkeley Unix on the Internet and fixing it to be reliable and to run large research applications well. This was all great fun and very rewarding. And, frankly, I saw no robots here, or anywhere near.
在伯克利待了几年后,我开始向另外一些使用类似小型PDP-11和VAX微型计算机的同仁提供自己写的一些软件:一个教育用Pascal编译器、一些UNIX程序和名为VI的文本编辑器(令人吃惊的是,到现在已经20多年了,它仍然被广泛地使用)。在这些软件上的探索最终形成了伯克利版本的UNIX,由此产生了我个人的“成功之灾”:太多的人想要得到它,以至于我没能完成我的博士学位。幸好,我得到了一份为DARPA(美国国防部先进计划研究局)把UNIX系统应用到因特网上的工作,我的任务是使UNIX系统更加可靠,并能运行很多大型应用软件。这一工作非常有意思并有很高的报酬。并且,坦白地说,我没有在这个项目中或别的什么地方看到什么机器人。
Still, by the early 1980s, I was drowning. The Unix releases were very successful, and my little project of one soon had money and some staff, but the problem at Berkeley was always office space rather than money—there wasn’t room for the help the project needed, so when the other founders of Sun Microsystems showed up I jumped at the chance to join them. At Sun, the long hours continued into the early days of workstations and personal computers, and I have enjoyed participating in the creation of advanced microprocessor technologies and Internet technologies such as Java and Jini.
随后,直到1980年早期,我一直潜心学习。Unix系统的发布版非常成功,我的小项目很快有了钱和一些工作人员,但在伯克利,办公室总是比金钱要少得多;那儿不能为我的计划提供所需的房间,所以,当Sun微系统公司的其他创始人出面邀请我时,我就加入了他们。在Sun公司,我们为早期的工作站与个人计算机投入了大量时间,我则醉心参与先进微处理器技术与Java、Jini之类因特网技术的开发。
From all this, I trust it is clear that I am not a Luddite. I have always, rather, had a strong belief in the value of the scientific search for truth and in the ability of great engineering to bring material progress. The Industrial Revolution has immeasurably improved everyone’s life over the last couple hundred years, and I always expected my career to involve the building of worthwhile solutions to real problems, one problem at a time.
从所有这些事情中,我相信我决不会是个卢德主义者。我一直坚信为寻找真理而进行科学研究的价值和为改进物质条件而进行大规模工作实践的可能性。在过去几个世纪,工业革命曾经不可限量地改善了每个人的生活质量。我一直希望我的事业能够为解决有关国计民生的问题作出一份贡献。
I have not been disappointed. My work has had more impact than I had ever hoped for and has been more widely used than I could have reasonably expected. I have spent the last 20 years still trying to figure out how to make computers as reliable as I want them to be (they are not nearly there yet) and how to make them simple to use (a goal that has met with even less relative success). Despite some progress, the problems that remain seem even more daunting.
我从来没有感到悲观失望。我的工作比我希望的更有影响,比我想到的应用更广泛。我用去20多年的时间使计算机能象我希望的那样可靠(目前它们几乎还不能达到这一目标),并且更加简便易用(这一目标取得了相对成功)。除去一些有限的技术进步,这些问题依然在那里,甚至看上去更加难以解决。
But while I was aware of the moral dilemmas surrounding technology’s consequences in fields like weapons research, I did not expect that I would confront such issues in my own field, or at least not so soon.
当我关注用于武器研究的技术成就的道德困境时,我不希望我自己的研究领域也会面对这样的问题,至少不是马上。
Perhaps it is always hard to see the bigger impact while you are in the vortex of a change. Failing to understand the consequences of our inventions while we are in the rapture of discovery and innovation seems to be a common fault of scientists and technologists; we have long been driven by the overarching desire to know that is the nature of science’s quest, not stopping to notice that the progress to newer and more powerful technologies can take on a life of its own.
当一个处于风暴中心时,他很难对形势作出正确的判断。作为科学家和技术人员,当我们处于发现的狂喜之中时,我们看不到我们的发明所造成的后果。我们长久以来被求知的欲望驱驶,我们停不下脚步,这是科学家的天性,如果仅此而已,那我们就是不称职的科学家。现在我们要告诉大家:更新更具威力的科技进步最终会压跨生命本身!
I have long realized that the big advances in information technology come not from the work of computer scientists, computer architects, or electrical engineers, but from that of physical scientists. The physicists Stephen Wolfram and Brosl Hasslacher introduced me, in the early 1980s, to chaos theory and nonlinear systems. In the 1990s, I learned about complex systems from conversations with Danny Hillis, the biologist Stuart Kauffman, the Nobel-laureate physicist Murray Gell-Mann, and others. Most recently, Hasslacher and the electrical engineer and device physicist Mark Reed have been giving me insight into the incredible possibilities of molecular electronics.
长久以来,我认识到在信息技术领域的进步不是来自于计算机科学家、计算机设计师或电子工程师,而是来自于物理学家。在1970年早期,物理学家斯Stephen Wolfman和Brosl Hasslacher向我介绍了浑混理论和非线性系统。1990年我在与丹尼-Hillis、生物学家斯图尔特-考夫曼、诺贝尔物理学奖获得者Marray Gellmane及其他人的交谈中了解到了复杂系统的有关知识。HassLacher和电子工程师、device实验物理学家MarkReed让我领略到了分子电子学不可思议的应用前景。
In my own work, as codesigner of three microprocessor architectures—SPARC, picoJava, and MAJC—and as the designer of several implementations thereof, I’ve been afforded a deep and firsthand acquaintance with Moore’s law. For decades, Moore’s law has correctly predicted the exponential rate of improvement of semiconductor technology. Until last year I believed that the rate of advances predicted by Moore’s law might continue only until roughly 2010, when some physical limits would begin to be reached. It was not obvious to me that a new technology would arrive in time to keep performance advancing smoothly.
在我自己的工作中,作为三种微处理器架构:SPARC、picoJava、MAJC的设计者之一,并且作为以上架构的若干种实现的设计者之一,我亲自感受至了摩尔定律。在过去数十年间,摩尔定律精确地预测了半导体技术的指数级增长。直到去年,我仍然想信在一些物理极限达到之前,摩尔定律到2010年前仍能精确地预测半导体技术的增长率。我并不认为到时会有新技术来保持半导体技术平稳地前进。
But because of the recent rapid and radical progress in molecular electronics—where individual atoms and molecules replace lithographically drawn transistors—and related nanoscale technologies, we should be able to meet or exceed the Moore’s law rate of progress for another 30 years. By 2030, we are likely to be able to build machines, in quantity, a million times as powerful as the personal computers of today—sufficient to implement the dreams of Kurzweil and Moravec.
但最近分子电子学以及相关纳米技术方面的快速而根本的进展,使得我们能用单个原子和分子取化平面蚀刻二极管,这样我们就能在另外一个30年内保持甚至超越摩尔定律。我们就有希望建造比现在个人电脑强大百万倍的机器,足以实现库茨库尔和摩洛维克的梦想。
As this enormous computing power is combined with the manipulative advances of the physical sciences and the new, deep understandings in genetics, enormous transformative power is being unleashed. These combinations open up the opportunity to completely redesign the world, for better or worse: The replicating and evolving processes that have been confined to the natural world are about to become realms of human endeavor.
当强大的计算能力与物理科学的进步、对基因深入了解及其巨大进化能力结合到一起时,无论是好是坏,是福是祸,我们已经完全有能力改变这个世界:被束缚在自然界中的复制与进化机制现在已经可以由人类操控了。
In designing software and microprocessors, I have never had the feeling that I was designing an intelligent machine. The software and hardware is so fragile and the capabilities of the machine to “think” so clearly absent that, even as a possibility, this has always seemed very far in the future.
我在设计软件与硬件时,从来没有感觉到我是在设计智能机器。软件与硬件是如此脆弱,机器“思考”的能力是如此差劲,就算考虑进它们可能达到的水平,也离上述的未来太遥远。
But now, with the prospect of human-level computing power in about 30 years, a new idea suggests itself: that I may be working to create tools which will enable the construction of the technology that may replace our species. How do I feel about this? Very uncomfortable. Having struggled my entire career to build reliable software systems, it seems to me more than likely that this future will not work out as well as some people may imagine. My personal experience suggests we tend to overestimate our design abilities.
但现在,随着人类水平的计算能力在过去30年中的飞速发展,在我的脑海中一种新的想法浮现出来:可能我们努力开发出来的工具将帮助那些能够取代人类自身的技术成果孕育成熟。我对此有何感受?我非常不安。我奉献出我的一生建造可靠的软件系统,对我而言,某些人描绘未来世界最好不要出现。我的个人经验告诉我,我们总是对自己设计的设计能力评价过高,而设计中微小的失误就会造成不可挽回的损失。
Given the incredible power of these new technologies, shouldn’t we be asking how we can best coexist with them? And if our own extinction is a likely, or even possible, outcome of our technological development, shouldn’t we proceed with great caution?
我们给了这些技术不可思议的强大威力,那我们该如何与它们和平共处呢?我们自己的技术发展也许会,甚至极有可能导致自身的来绝,难道我们还不应当小心翼翼地前进吗?
The dream of robotics is, first, that intelligent machines can do our work for us, allowing us lives of leisure, restoring us to Eden. Yet in his history of such ideas, Darwin Among the Machines, George Dyson warns: “In the game of life and evolution there are three players at the table: human beings, nature, and machines. I am firmly on the side of nature. But nature, I suspect, is on the side of the machines.” As we have seen, Moravec agrees, believing we may well not survive the encounter with the superior robot species.
起初,机器人之梦就是智能机器能为我们干所有人类能干的工作,使我们能悠闲生活,重返伊甸园。而乔治—dyson,机器人世界中的达尔文,在研究这一梦想的过程中发出警告:“在生命及其进化的游戏中有三个玩家:人类、自然,还有机器,我坚定地站在自然一边,但自然,我怀疑它是站在机器一边的。”正如我们在上面看到的,莫拉维奇就相信我们可能不会在遭遇到占优势的机器人种族时幸存下来。
How soon could such an intelligent robot be built? The coming advances in computing power seem to make it possible by 2030. And once an intelligent robot exists, it is only a small step to a robot species—to an intelligent robot that can make evolved copies of itself.
还有多长时间会出现智能机器人?在即将到来的计算机能力将使之在2030年成为现实,并且,一旦一台智能机器人出现,这对机器人种族来说只是很小一步,但这台机器人自身来说,它能马上产生无数自身经过进化的复本。
A second dream of robotics is that we will gradually replace ourselves with our robotic technology, achieving near immortality by downloading our consciousnesses; it is this process that Danny Hillis thinks we will gradually get used to and that Ray Kurzweil elegantly details in The Age of Spiritual Machines. (We are beginning to see intimations of this in the implantation of computer devices into the human body, as illustrated on the cover of Wired 8.02.)
关于机器人的第二个梦想是我们将逐步用机器人技术取代自己的身体,通过下载我们的意识而达到永生不死。这就是丹尼尔—Hillis所描绘的我会正在慢慢适应的世界前景;雷—库茨维尔在《智能机器的时代》一书中的描述的细节。(我们已在《连线》杂志8.02的封面上描绘的计算机设备到人类身体的移植上初见端倪)
But if we are downloaded into our technology, what are the chances that we will thereafter be ourselves or even human? It seems to me far more likely that a robotic existence would not be like a human one in any sense that we understand, that the robots would in no sense be our children, that on this path our humanity may well be lost.
但是,如果我们被下载到我们的科技设备之中,我们还有机会成为我们自己,甚至人类吗?我认为以机器人形式存在的绝不会是我们理解的人类个体,机器人绝对不会成为我们的孩子。
Genetic engineering promises to revolutionize agriculture by increasing crop yields while reducing the use of pesticides; to create tens of thousands of novel species of bacteria, plants, viruses, and animals; to replace reproduction, or supplement it, with cloning; to create cures for many diseases, increasing our life span and our quality of life; and much, much more. We now know with certainty that these profound changes in the biological sciences are imminent and will challenge all our notions of what life is.
基因工程承诺在减少杀虫剂使用量的同时通过提高农作物产量来使我们的农业发生天翻地覆式的革命;创造成千上万种新型细菌、植物、病毒和动物;通过克隆技术替代自然生殖或增强自然生殖能力;治瘉疾病,增加我们的寿命与生活质量;还有很多很多。我们现在确切地知道这些生物技术中的深刻变革即将到来,并将挑战生命是什么的传统观念!
Technologies such as human cloning have in particular raised our awareness of the profound ethical and moral issues we face. If, for example, we were to reengineer ourselves into several separate and unequal species using the power of genetic engineering, then we would threaten the notion of equality that is the very cornerstone of our democracy.
像人体克隆之类的技术已经使我们分外关注即将面对的伦理与道德问题。打个比方,如果我们使用基因工程技术改造我们的自己身体,或者改造不同的人群、种族,那我们就会摧毁我们民主政治的基石:平等。
Given the incredible power of genetic engineering, it’s no surprise that there are significant safety issues in its use. My friend Amory Lovins recently cowrote, along with Hunter Lovins, an editorial that provides an ecological view of some of these dangers. Among their concerns: that “the new botany aligns the development of plants with their economic, not evolutionary, success.” (See “A Tale of Two Botanies”) Amory’s long career has been focused on energy and resource efficiency by taking a whole-system view of human-made systems; such a whole-system view often finds simple, smart solutions to otherwise seemingly difficult problems, and is usefully applied here as well.
毫无疑问,基因工程巨大的威力会在其使用过程中带来严重的安全问题。我们的朋友Amory Lovins最近与Hunter Lovins合作写了一篇社论,他们从生态学的观念考察了这类危险。在他们所关心的问题中:“新植物学”(见《两个植物学家的故事》247页)。Amory在其漫长的职业生涯中一直关注从人造系统的整体观点研究能量及资源效率;这样的整体系统观念常常发现以别的方式看上去非常困难的问题有着简单而高明的解决方法。这种方式也能在此得到很好的应用。
After reading the Lovins’ editorial, I saw an op-ed by Gregg Easterbrook in The New York Times (November 19, 1999) about genetically engineered crops, under the headline: “Food for the Future: Someday, rice will have built-in vitamin A. Unless the Luddites win.”
读完Lovins的社论后,我看了Gregg Easterbrook在《纽约时报》(1999年11月9日)发表的关于基因改良稻的非定官方评论。在大标题下写着:“未来的食物:除非卢德主义者胜利了,否则总有一天稻米将含有丰富的维生素。”
Are Amory and Hunter Lovins Luddites? Certainly not. I believe we all would agree that golden rice, with its built-in vitamin A, is probably a good thing, if developed with proper care and respect for the likely dangers in moving genes across species boundaries.
Amory和Lovins是卢德主义者吗?当然不是,我相信我们都同意:只要我们适当地关注在物种之间转移基因所带来的危险,“金稻”及其内含的维生素A对我们是有利的。
Awareness of the dangers inherent in genetic engineering is beginning to grow, as reflected in the Lovins’ editorial. The general public is aware of, and uneasy about, genetically modified foods, and seems to be rejecting the notion that such foods should be permitted to be unlabeled.
我们正在逐渐提高对基因工程与生俱来的危险性的关注程度,就象Lovins的社论所带来的反应。一般公众现在正很难得地在关注着基因改良食物,而且看上去他们不同意对这类食物不作特别标识的作法。
But genetic engineering technology is already very far along. As the Lovins note, the USDA has already approved about 50 genetically engineered crops for unlimited release; more than half of the world’s soybeans and a third of its corn now contain genes spliced in from other forms of life.
但基因工程技术已经走得太远了。在Lovins的备忘录中,USAP(美国农业部)已经批准了大约50种改良作物可以不受限制地扩散,世界上有超过一半的大豆和三分之一的玉米现在已经含有来自其他生物的基因。
While there are many important issues here, my own major concern with genetic engineering is narrower: that it gives the power—whether militarily, accidentally, or in a deliberate terrorist act—to create a White Plague.
在这里,非常非常重要的是,我所关注的基因工程领域,还有更重要的是,无论是军事上的,还是事故,还是蓄意的恐怖袭击,基因工程都给了他们制造白色瘟疫的强大能力。
The many wonders of nanotechnology were first imagined by the Nobel-laureate physicist Richard Feynman in a speech he gave in 1959, subsequently published under the title “There’s Plenty of Room at the Bottom.” The book that made a big impression on me, in the mid-‘80s, was Eric Drexler’s Engines of Creation, in which he described beautifully how manipulation of matter at the atomic level could create a utopian future of abundance, where just about everything could be made cheaply, and almost any imaginable disease or physical problem could be solved using nanotechnology and artificial intelligences.
纳粹技术的许多奇迹第一次被描述是在1959由诺贝尔物理学获奖者理查德-费曼Feynman的一次演讲上,随后,以《底下还大有可为》出版了这篇演讲稿。在80年代中期,给我留下深刻映像的是Eric Drexler的《创造引擎》,在这本书中,他生动了描绘了原子级的物质生产,创造出了多么美好的乌托邦。在那里能非常方便地生产每一样东西。使用纳米技术我人工智能,几乎任何一种你能想像得到的疾病或身体上的缺陷都会得到完美的解决。
A subsequent book, Unbounding the Future: The Nanotechnology Revolution, which Drexler cowrote, imagines some of the changes that might take place in a world where we had molecular-level “assemblers.” Assemblers could make possible incredibly low-cost solar power, cures for cancer and the common cold by augmentation of the human immune system, essentially complete cleanup of the environment, incredibly inexpensive pocket supercomputers—in fact, any product would be manufacturable by assemblers at a cost no greater than that of wood—spaceflight more accessible than transoceanic travel today, and restoration of extinct species.
纳粹技术的许多奇迹第一次被描述是在1959由诺贝尔物理学获奖者理查德-费曼Feynman的一次演讲上,随后,以《底下还大有可为》出版了这篇演讲稿。在80年代中期,给我留下深刻映像的是EricDrexler的《创造引擎》,在这本书中,他生动了描绘了原子级的物质生产,创造出了多么美好的乌托邦。在那里能非常方便地生产每一样东西。使用纳米技术我人工智能,几乎任何一种你能想像得到的疾病或身体上的缺陷都会得到完美的解决。
I remember feeling good about nanotechnology after reading Engines of Creation. As a technologist, it gave me a sense of calm—that is, nanotechnology showed us that incredible progress was possible, and indeed perhaps inevitable. If nanotechnology was our future, then I didn’t feel pressed to solve so many problems in the present. I would get to Drexler’s utopian future in due time; I might as well enjoy life more in the here and now. It didn’t make sense, given his vision, to stay up all night, all the time.
我记得我读完了《创造引擎》后,感觉还不错。作为技术人员,这本书让我感觉平静,也就是说,这本书向我展示的不可思议的纳米技术是可能的,确实也是不可避免的。如果纳米技术是我们的未来,我就不会对眼前这些问题有紧迫感。我就会到时顺理成章地进入Drexler的乌托邦,我就会在此时此刻尽情享受生活。我现在没日没夜地辛苦工作在他的未来中根本就毫无意义。
Drexler’s vision also led to a lot of good fun. I would occasionally get to describe the wonders of nanotechnology to others who had not heard of it. After teasing them with all the things Drexler described I would give a homework assignment of my own: “Use nanotechnology to create a vampire; for extra credit create an antidote.”
Drexler的想像也带来了很多乐趣。我有时也向没有听说过纳米技术的人描绘一下纳米技术的奇迹。在用Drexler描述的东西调侃一下他们后,我还给他们一个我个人的课后作业:“用纳米技术建造一个帝国;但是你要想得到学分的话,就要再建造一个能摧毁它的力量。”
With these wonders came clear dangers, of which I was acutely aware. As I said at a nanotechnology conference in 1989, “We can’t simply do our science and not worry about these ethical issues.” 5 But my subsequent conversations with physicists convinced me that nanotechnology might not even work—or, at least, it wouldn’t work anytime soon. Shortly thereafter I moved to Colorado, to a skunk works I had set up, and the focus of my work shifted to software for the Internet, specifically on ideas that became Java and Jini.
我十分关心这些与奇迹伴随而来的明显的危险。正如我在1989年纳米技术大会上所说的:“我们不能单单只顾埋头研究科学而不关心与之相关的道德问题。”但在下一个物理学家参加的会议上,他们使我相信纳米技术甚至不能正常运作,或者,至少不能在任何时间都能正常运作。随后,我移居到科罗拉多州,进行一项我领导的skunk工作。我的工作重点转向了因特网软件,重点是最后形成Java和Jini的一些想法。
Then, last summer, Brosl Hasslacher told me that nanoscale molecular electronics was now practical. This was new news, at least to me, and I think to many people—and it radically changed my opinion about nanotechnology. It sent me back to Engines of Creation. Rereading Drexler’s work after more than 10 years, I was dismayed to realize how little I had remembered of its lengthy section called “Dangers and Hopes,” including a discussion of how nanotechnologies can become “engines of destruction.” Indeed, in my rereading of this cautionary material today, I am struck by how naive some of Drexler’s safeguard proposals seem, and how much greater I judge the dangers to be now than even he seemed to then. (Having anticipated and described many technical and political problems with nanotechnology, Drexler started the Foresight Institute in the late 1980s “to help prepare society for anticipated advanced technologies”—most important, nanotechnology.)
在我任期将满的那个夏天,BroslHasslacher告诉我纳米分子电子学已经实用化了。这的确是个新闻,至少对我来说是如此。我想对许多人来说也是这样。这一消息彻底改变了我对纳米技术的看法,让我不由自主回想起了《创造引擎》。在10年之后重读Drexler的著作,我沮丧地发现我记得其中冗长的一章《危险与希望》的很少很少一部分。在这一章,作者指出纳米技术可能会成为“毁灭的引擎”。在今天重读这段警世名言时,我对Drexler提出的如此天真的防卫方案感到惊奇!并且我认识到的危险性要比他当时所认为的大得多!(由于预言并描绘了纳米技术带来的众多技术和政治问题,Drexler在80年代末创立了Foresigh研究所,用以帮助社会大众迎接即将到来的先进科技—其中最主要的是纳米技术。)
The enabling breakthrough to assemblers seems quite likely within the next 20 years. Molecular electronics—the new subfield of nanotechnology where individual molecules are circuit elements—should mature quickly and become enormously lucrative within this decade, causing a large incremental investment in all nanotechnologies.
使“装配工”成为可能的技术突破很有可能在下一个20年内实现。在未来10年内,分子电子学,能把单个分子排列成为电路器件的纳米技术,很快就会成熟并成为非常有利可图的技术成果,并招致对纳米技术各个领域投资的大幅增长。
Unfortunately, as with nuclear technology, it is far easier to create destructive uses for nanotechnology than constructive ones. Nanotechnology has clear military and terrorist uses, and you need not be suicidal to release a massively destructive nanotechnological device—such devices can be built to be selectively destructive, affecting, for example, only a certain geographical area or a group of people who are genetically distinct.
但不幸的是,就象核技术一样,用纳米技术来进行破坏活动要比进行建设活动容易得多,纳米技术在军事我恐怖袭击活动中有着十分明确的用途,并且恐怖分子不需要用自杀性攻击方式来释放大规模杀伤性纳米技术装置,他们能建造具有选择性破坏能力的纳米装置,例如仅仅对特定地区或者具有显著基因、生物特征的人群。
An immediate consequence of the Faustian bargain in obtaining the great power of nanotechnology is that we run a grave risk—the risk that we might destroy the biosphere on which all life depends.
为了得到纳米技术巨大威力而进行的浮士德式的交易的直接后果就是我们正在玩火—我们可能会我们包容万物的生物圈。
As Drexler explained:
而Drexler却如是说:
“Plants” with “leaves” no more efficient than today’s solar cells could out-compete real plants, crowding the biosphere with an inedible foliage. Tough omnivorous “bacteria” could out-compete real bacteria: They could spread like blowing pollen, replicate swiftly, and reduce the biosphere to dust in a matter of days. Dangerous replicators could easily be too tough, small, and rapidly spreading to stop—at least if we make no preparation. We have trouble enough controlling viruses and fruit flies.
不比现在的太阳能电池板效率更高,“有叶树木”会排挤掉正常的树木,即那些到处都是而又不能食用的树木。粗野而又无所不能的“细菌”会排挤掉真正的细茵,它们象风中的花粉一样传播、快速地繁衍,并且把生物圈中生命降解成象灰尘一样的东西。如果我们没有做好准备,危险的复制者可能会太粗野、太小、太快地传播而失去控制。对我们来说,即使是控制病毒和花粉就已经让我们伤尽脑筋了。
Among the cognoscenti of nanotechnology, this threat has become known as the “gray goo problem.” Though masses of uncontrolled replicators need not be gray or gooey, the term “gray goo” emphasizes that replicators able to obliterate life might be less inspiring than a single species of crabgrass. They might be superior in an evolutionary sense, but this need not make them valuable.
在熟知纳米技术的人中,这种“灰胶”的威胁,以“灰胶问题”而广为人知。尽管大量失去控制的“复制者”既不是“灰”色,也不呈“胶”状。但“灰胶”这个名词是指“复制者”能涂去可能比杂草crabgrass更少生气的生命。它们可能在生物进化是优胜者,但这并不会使它们高人一等。
The gray goo threat makes one thing perfectly clear: We cannot afford certain kinds of accidents with replicating assemblers.
使这一事实更加明白无误:我们负担不起此类“复制装配工”引起的事故。
Gray goo would surely be a depressing ending to our human adventure on Earth, far worse than mere fire or ice, and one that could stem from a simple laboratory accident. 6 Oops.
比起天降火球或冰雪覆盖,“灰胶”极有可能是我们人类在地球上冒险生涯的悲惨结局。而这一切可能仅仅由于一次简单的实验室事故。
It is most of all the power of destructive self-replication in genetics, nanotechnology, and robotics (GNR) that should give us pause. Self-replication is the modus operandi of genetic engineering, which uses the machinery of the cell to replicate its designs, and the prime danger underlying gray goo in nanotechnology. Stories of run-amok robots like the Borg, replicating or mutating to escape from the ethical constraints imposed on them by their creators, are well established in our science fiction books and movies. It is even possible that self-replication may be more fundamental than we thought, and hence harder—or even impossible—to control. A recent article by Stuart Kauffman in Nature titled “Self-Replication: Even Peptides Do It” discusses the discovery that a 32-amino-acid peptide can “autocatalyse its own synthesis.” We don’t know how widespread this ability is, but Kauffman notes that it may hint at “a route to self-reproducing molecular systems on a basis far wider than Watson-Crick base-pairing.” 7
在基因工程、纳米技术和机器人(GNR)中的毁灭性的自我复制威力极有可能使我们人类发展嘎然而止。自我复制是基因工程的一种主要研究方法,它利用细菌的自我复制机制,而主要的危险来自于纳米技术的“灰胶”。横行霸道的机器人的故事,比如《星际旅行》中的博格人,通过复制或变种来脱离其制造者施加的道德约束,这一情景在我们的科幻小说与科幻电影中表现得淋漓尽致。自我复制的本能可能比我们想象得更加贴近物质本性,因此也就更加难以控制,如果我们还有机会来控制话。Sturoot Kauffman最近在《自然》杂志上发表了一篇名为《自我复制:缩氨酸也能行》的文章,他在文章中指出32-amino-acid缩氨酸能“自我催化自身组织”。我们不知道这一能力在自然界有多广泛,但Kauffman认为这一现象提示我们“自我生产分子系统方式比沃森-克里克”的双螺旋base-pairing要基本得多。
In truth, we have had in hand for years clear warnings of the dangers inherent in widespread knowledge of GNR technologies—of the possibility of knowledge alone enabling mass destruction. But these warnings haven’t been widely publicized; the public discussions have been clearly inadequate. There is no profit in publicizing the dangers.
事实上,我们多年以来已经得到了明确无误的警告:广泛传播的GNR知识带有与生俱来的危险性。仅仅只需要知识就能造成大规模的破坏。但这些警告还没有广为人知;很明显,公众对此没有足够的关注,而传播有关这一危险的信息对许多人来说却又无利可图。
The nuclear, biological, and chemical (NBC) technologies used in 20th-century weapons of mass destruction were and are largely military, developed in government laboratories. In sharp contrast, the 21st-century GNR technologies have clear commercial uses and are being developed almost exclusively by corporate enterprises. In this age of triumphant commercialism, technology—with science as its handmaiden—is delivering a series of almost magical inventions that are the most phenomenally lucrative ever seen. We are aggressively pursuing the promises of these new technologies within the now-unchallenged system of global capitalism and its manifold financial incentives and competitive pressures.
用于制造二十世纪大规模杀伤性武器的核技术、生化技术(NBC)在过去与现在都是由政府机构开发的军事技术。与之完全相反的是,21世纪的GNR技术具有很明确的商业用途,毫无例外都是商业公司企业在进行研发。在这个商业主义大行其道的时代,只要能得到最大的收益,以科学作为自己奴仆的技术进步就能释放出魔幻般的发明创造。在现在全球酱主义及其多样化的金融动力及竞争压力下,我们不加思索地就做出决定来开发这些新技术。
This is the first moment in the history of our planet when any species, by its own voluntary actions, has become a danger to itself—as well as to vast numbers of others.
这是在我们星球的历史上第一次出现某种生物出于自愿而使其他许多物种陷入绝境。
It might be a familiar progression, transpiring on many worlds—a planet, newly formed, placidly revolves around its star; life slowly forms; a kaleidoscopic procession of creatures evolves; intelligence emerges which, at least up to a point, confers enormous survival value; and then technology is invented. It dawns on them that there are such things as laws of Nature, that these laws can be revealed by experiment, and that knowledge of these laws can be made both to save and to take lives, both on unprecedented scales. Science, they recognize, grants immense powers. In a flash, they create world-altering contrivances. Some planetary civilizations see their way through, place limits on what may and what must not be done, and safely pass through the time of perils. Others, not so lucky or so prudent, perish.
这可能是很常见的过程,在许多世界中流传,一个才形成的星球,平静地在星河中怱隐怱现,生命慢慢形成;接下来是万花筒般的生物进化世纪;智能逐渐浮现;终有一天,生物靠此度过险境;然后技术发明出来;自然法则逐渐被了解;这些法则来自于实践,有关这些法则的知识以空前的速度被保存、被传播;它们认识世界、获取无边的动力;就象电光一闪,它们已经创造出能改变世界的发明;一些行星上的文明之路漫长而曲折,前途时而是一失足成千古恨的独木桥,里面是任意驰骋的阳关道;它们中有一些安全地度过艰难岁月,而有些却不是如此幸运或谨慎而遭到灭顶之灾。
That is Carl Sagan, writing in 1994, in Pale Blue Dot, a book describing his vision of the human future in space. I am only now realizing how deep his insight was, and how sorely I miss, and will miss, his voice. For all its eloquence, Sagan’s contribution was not least that of simple common sense—an attribute that, along with humility, many of the leading advocates of the 21st-century technologies seem to lack.
这是事实,Sagan在1994年出版的《暗淡的蓝点》一书中所说的,这本书描绘了人类在宇宙中的未来命运。我到现在才认识到,他的眼光是如此深邃,我已经,还有将来会错过他的教诲。对于所有这些至理名言,Sagan的贡献并不仅仅是简单的常识,许多21世纪技术的领先者看上去缺少这种谦逊品质。
I remember from my childhood that my grandmother was strongly against the overuse of antibiotics. She had worked since before the first World War as a nurse and had a commonsense attitude that taking antibiotics, unless they were absolutely necessary, was bad for you.
从小我就记得我的祖母强烈反对滥用抗生素。她从一次大战前就开始从事护士工作。作为一名护士,除非绝对必须,使用抗生素是对人有害的。
It is not that she was an enemy of progress. She saw much progress in an almost 70-year nursing career; my grandfather, a diabetic, benefited greatly from the improved treatments that became available in his lifetime. But she, like many levelheaded people, would probably think it greatly arrogant for us, now, to be designing a robotic “replacement species,” when we obviously have so much trouble making relatively simple things work, and so much trouble managing—or even understanding—ourselves.
这并不是说她是进步的敌人。她在70年的护士生涯中看到了许多技术进步。我的祖父是一个糖尿病人,在其有生之年,人从已经证实确实有效的治疗方法中获益不浅。但我的祖母,就象其他头脑清醒的人一样,也许会认为在我们很明显无力应付相对较简单的工作,并为管理或者理解我们自身伤尽脑筋时,却想着要发明一种机器人“替代物种”,这是不是太狂妄自大了?
I realize now that she had an awareness of the nature of the order of life, and of the necessity of living with and respecting that order. With this respect comes a necessary humility that we, with our early-21st-century chutzpah, lack at our peril. The commonsense view, grounded in this respect, is often right, in advance of the scientific evidence. The clear fragility and inefficiencies of the human-made systems we have built should give us all pause; the fragility of the systems I have worked on certainly humbles me.
我现在认识到她已经了解了这个众生各安天命的自然界,万物依天命而生,并对自然充满敬畏。伴随着由敬畏而来的谦逊,伴随着21世纪早期的chatipah,我们才不会过于胆大妄为。扎根于这一敬畏的常识、观点一般是正确的,胜过科学的所谓证据。我们建造的人工系统很明显非常脆弱,可能会使我们人类的发展嘠然而止。由人造系统的脆弱无能曾多次使我们蒙羞。
We should have learned a lesson from the making of the first atomic bomb and the resulting arms race. We didn’t do well then, and the parallels to our current situation are troubling.
我们应当从第一枚原子弹的制造及其引发的军备竞赛中吸取教训。但我们马上又要重蹈覆辙了,与那时情况类似的灾难又要重现人间。
The effort to build the first atomic bomb was led by the brilliant physicist J. Robert Oppenheimer. Oppenheimer was not naturally interested in politics but became painfully aware of what he perceived as the grave threat to Western civilization from the Third Reich, a threat surely grave because of the possibility that Hitler might obtain nuclear weapons. Energized by this concern, he brought his strong intellect, passion for physics, and charismatic leadership skills to Los Alamos and led a rapid and successful effort by an incredible collection of great minds to quickly invent the bomb.
制造第一枚原子弹的成就出自天才物理学家罗伯特-奥本海默的杰出领导。奥本海默本非天生就对政治感兴趣,只是他对第三帝国对西方文明的威胁有切肤之痛。由于希特勒可能就要拥有核武器,这一威胁毫无疑问是更加致命的。在此威胁的驱使下,他用自己杰出的智力、对物理学的热情、非凡的领导才能,汇集了无数伟大思想,在洛斯阿拉莫斯成功而又迅速地制造出了第一枚原子弹。
What is striking is how this effort continued so naturally after the initial impetus was removed. In a meeting shortly after V-E Day with some physicists who felt that perhaps the effort should stop, Oppenheimer argued to continue. His stated reason seems a bit strange: not because of the fear of large casualties from an invasion of Japan, but because the United Nations, which was soon to be formed, should have foreknowledge of atomic weapons. A more likely reason the project continued is the momentum that had built up—the first atomic test, Trinity, was nearly at hand.
令人惊奇的是,在最初的动机消失后,这一工作却偏离了原来的设想!在v-eDay之后举行的一次会议上,一些物理学家认为也许要停止对原子弹的研究工作,而奥本海默却坚持要继续进行。他作出这一决定的理由有些奇怪:不是害怕占领日本造成的巨大人员伤亡,而是因为很快强大起来的美国应当掌握原子武器的预备知识。而更有力的原因是momentum已经建造完成,第一次原子强试验-三位一体-已经准备就绪了。
We know that in preparing this first atomic test the physicists proceeded despite a large number of possible dangers. They were initially worried, based on a calculation by Edward Teller, that an atomic explosion might set fire to the atmosphere. A revised calculation reduced the danger of destroying the world to a three-in-a-million chance. (Teller says he was later able to dismiss the prospect of atmospheric ignition entirely.) Oppenheimer, though, was sufficiently concerned about the result of Trinity that he arranged for a possible evacuation of the southwest part of the state of New Mexico. And, of course, there was the clear danger of starting a nuclear arms race.
我们知道在这次原子弹试验中,物理学家要克服大量前所未知的危险。根据爱德华-泰勒的计算,他们起初担心原子弹爆炸会引燃大气层。后来经过修正的计算把毁灭世界的危险降到了一百万分之三(泰勒说他后来放弃了原子弹爆炸会引燃整个大气层的看法)。然而,奥本海默,十分担心三位一体实验的结果,他安排新墨西哥州北部的人们尽量撤离,并且,当然还有开始核军备竞赛的危险。
Within a month of that first, successful test, two atomic bombs destroyed Hiroshima and Nagasaki. Some scientists had suggested that the bomb simply be demonstrated, rather than dropped on Japanese cities—saying that this would greatly improve the chances for arms control after the war—but to no avail. With the tragedy of Pearl Harbor still fresh in Americans’ minds, it would have been very difficult for President Truman to order a demonstration of the weapons rather than use them as he did—the desire to quickly end the war and save the lives that would have been lost in any invasion of Japan was very strong. Yet the overriding truth was probably very simple: As the physicist Freeman Dyson later said, “The reason that it was dropped was just that nobody had the courage or the foresight to say no.”
在与第一次成功核试验的同一个月内,两枚原子弹投到了广岛与长崎。一些科学家建议只需要简单演示一下这种炸弹的巨大威力,而不用真正地把它们投到日本的城市,他们以为这样就能极大地增加在战后军备控制的机会。但这个建议没有人理会。只要珍珠港的悲剧仍然历历在目,就不可能让杜鲁门总统仅仅演示一下这种武器,而不把它们投到日本人头上。人们强烈要求尽快结束战争,从而可以拯救那些可能在占领日本的战斗中失去的生命。尽管无视真理可能非常简单,但是,正如物理学家弗雷曼-Dyson后来所说, 扔下原子弹的原因只是没有人有勇气说“不”!
It’s important to realize how shocked the physicists were in the aftermath of the bombing of Hiroshima, on August 6, 1945. They describe a series of waves of emotion: first, a sense of fulfillment that the bomb worked, then horror at all the people that had been killed, and then a convincing feeling that on no account should another bomb be dropped. Yet of course another bomb was dropped, on Nagasaki, only three days after the bombing of Hiroshima.
物理学家们对1945年8月广岛原子弹爆炸的后果是非常震惊的,认识到这一点是非常重要的。他们描述了持续不断的冲击波:首先,炸弹爆炸了,然后现场所有的人在惊恐中死去,接下来人们认为不会再投下另一枚炸弹。然而,另一枚还是在长崎投下了,仅仅在广岛之后三天。
In November 1945, three months after the atomic bombings, Oppenheimer stood firmly behind the scientific attitude, saying, “It is not possible to be a scientist unless you believe that the knowledge of the world, and the power which this gives, is a thing which is of intrinsic value to humanity, and that you are using it to help in the spread of knowledge and are willing to take the consequences.”
在1945年11月,原子弹爆炸后三个月,奥本海默以科学的态度坚持认为:“除非你认为世界上的知识及其与之俱来的威力是对人类有真正价值的东西,并且相信你要利用它们来传播知识并作出成绩,否则,你没有必要成为科学家。”
Oppenheimer went on to work, with others, on the Acheson-Lilienthal report, which, as Richard Rhodes says in his recent book Visions of Technology, “found a way to prevent a clandestine nuclear arms race without resorting to armed world government”; their suggestion was a form of relinquishment of nuclear weapons work by nation-states to an international agency.
奥本海默和其他人一起完成了《Acheson-Lilienthal报告》。关于这份报告,正如Richard Rhodes在他最近发表的《技术的Vision》中所说的:“在不扩散核武器到世界各国政府手中的情况下找到一种能防止秘密核军备竞赛的方法,”他们的建议是把核武器研制由国家移交到一个国际机构。
This proposal led to the Baruch Plan, which was submitted to the United Nations in June 1946 but never adopted (perhaps because, as Rhodes suggests, Bernard Baruch had “insisted on burdening the plan with conventional sanctions,” thereby inevitably dooming it, even though it would “almost certainly have been rejected by Stalinist Russia anyway”). Other efforts to promote sensible steps toward internationalizing nuclear power to prevent an arms race ran afoul either of US politics and internal distrust, or distrust by the Soviets. The opportunity to avoid the arms race was lost, and very quickly.
这一倡议产生了Barich计划,并于1946年提交给联合国,但从来没有被采用(可能是因为,就象Rhodes建议的,Bernard Baruch“坚持以传统约束力来作为此计划的保障,因此不可避免地使这一计划惨遭厄运,它几乎可以肯定会遭到斯大林主义下的苏联的反对”)。其他一些想通过国际化核武器来防止军备竞赛的努力也是四处踫壁。在内有美国政治家与国内人民之间的互不信任,外有来自苏联的威胁的情况下,避免军备竞赛的机会很快就一去不复返了。
Two years later, in 1948, Oppenheimer seemed to have reached another stage in his thinking, saying, “In some sort of crude sense which no vulgarity, no humor, no overstatement can quite extinguish, the physicists have known sin; and this is a knowledge they cannot lose.”
两年后,1948年,奥本海默似乎在思考上达到了另一个阶段,他说:“以某种粗糙的意义来说,没有粗俗、没有幽默、没有夸张可以完全抹灭,物理学家已经知道了罪恶;而这是一种他们无法抛弃的知识。”
In 1949, the Soviets exploded an atom bomb. By 1955, both the US and the Soviet Union had tested hydrogen bombs suitable for delivery by aircraft. And so the nuclear arms race began.
在1949年,苏联爆炸了第一枚原子弹。在1955年,美国和苏联试验了适于空投的氢弹。核军备竞赛从此开始了。
Nearly 20 years ago, in the documentary The Day After Trinity, Freeman Dyson summarized the scientific attitudes that brought us to the nuclear precipice:
近20年以前,在《“三位一体”核爆后的时代》一书中,弗雷曼-Dyson总结了把我们这处世界推入核大战边沿的科学的attitudes:
“I have felt it myself. The glitter of nuclear weapons. It is irresistible if you come to them as a scientist. To feel it’s there in your hands, to release this energy that fuels the stars, to let it do your bidding. To perform these miracles, to lift a million tons of rock into the sky. It is something that gives people an illusion of illimitable power, and it is, in some ways, responsible for all our troubles—this, what you might call technical arrogance, that overcomes people when they see what they can do with their minds.” 8
“核武器爆炸时的灿烂光辉是多么迷人,作为一名科学家,你不能抗拒它的诱惑,每个人都能感受到这一点,感受到把这一巨大威力握到自己手中,释放出点燃群星的能量时的自豪。让它们对你俯首贴耳,你能创造这些奇迹,你能把千万吨巨石抛向天空。它给予人们掌握无穷力量的幻想,它能解决我们的一切难题。这就是科学的傲慢,它让人们觉得自己无所不能。”
Now, as then, we are creators of new technologies and stars of the imagined future, driven—this time by great financial rewards and global competition—despite the clear dangers, hardly evaluating what it may be like to try to live in a world that is the realistic outcome of what we are creating and imagining.
现在,还有未来,我们是新科技的创造者。我们是未来世界耀眼的明星。在巨大经济回报及全球竞争的驱使下,我们全然不顾迫近的危险,很难预测哪些我们正在创造及构想的事物能在这个世界上不断成长,最终把我们取代。
In 1947, The Bulletin of the Atomic Scientists began putting a Doomsday Clock on its cover. For more than 50 years, it has shown an estimate of the relative nuclear danger we have faced, reflecting the changing international conditions. The hands on the clock have moved 15 times and today, standing at nine minutes to midnight, reflect continuing and real danger from nuclear weapons. The recent addition of India and Pakistan to the list of nuclear powers has increased the threat of failure of the nonproliferation goal, and this danger was reflected by moving the hands closer to midnight in 1998.
在1947年,《the Bulletin原子科学》杂志开始把“审判日时钟”放在封面上。在长达50年的时间内,它显示了我们面对的核危险的估计值,反映了国际形势的变迁。时钟上的指针已经移动了15次,到今天为止,离午夜只剩下9分钟,反映了核武器对我们持续不断而又迫在眉睫的危险。最近,印度和巴基斯坦加入了核俱乐部,使防止核武器扩散的目标陷于失败,这一危险使得时钟上的指针在1998年前所未有地更接近午夜。
In our time, how much danger do we face, not just from nuclear weapons, but from all of these technologies? How high are the extinction risks?
在我们的一生中,有多少危险要去面对。难道核武器还不够,还要加上这些科技吗?我们人类灭绝的危险到底有多高?
The philosopher John Leslie has studied this question and concluded that the risk of human extinction is at least 30 percent, while Ray Kurzweil believes we have “a better than even chance of making it through,” with the caveat that he has “always been accused of being an optimist.” 9 Not only are these estimates not encouraging, but they do not include the probability of many horrid outcomes that lie short of extinction.
哲学家约翰-Leslie经过研究得出人类灭绝的危险至少有30%。然而,雷-库兹维尔不顾对他过于乐观态度的指责,依然相信我们更有可能平安无事。但是,这两种态度都不应当提倡,而且他们都没有考虑到另外一引起可能性:那些信誓旦旦不会危害到人类的事物现在都发生了可怕的变化!
Faced with such assessments, some serious people are already suggesting that we simply move beyond Earth as quickly as possible. We would colonize the galaxy using von Neumann probes, which hop from star system to star system, replicating as they go. This step will almost certainly be necessary 5 billion years from now (or sooner if our solar system is disastrously impacted by the impending collision of our galaxy with the Andromeda galaxy within the next 3 billion years), but if we take Kurzweil and Moravec at their word it might be necessary by the middle of this century.
面对这样的评估结果,一些严肃的人们已经开始建议我们一有可能就要移民到外星球。我们将利用冯·诺伊曼探测器殖民银河系,这些探测器会从一个恒星系统跳到另一个恒星系统,并在途中进行复制。在50亿年后,我们就有需要这样做(或者更短一些,在30亿年后,如果太阳被步步紧逼的仙女座撞击的话)。但是如果我们进入库兹维尔和莫拉维克所说的世界,那到本世纪中叶,我们可能就要这样做了!
What are the moral implications here? If we must move beyond Earth this quickly in order for the species to survive, who accepts the responsibility for the fate of those (most of us, after all) who are left behind? And even if we scatter to the stars, isn’t it likely that we may take our problems with us or find, later, that they have followed us? The fate of our species on Earth and our fate in the galaxy seem inextricably linked.
这里的道德约做含意是什么?如果我们必须为了种族生存而移居外星,谁该为人类这样的命运负责?(我们自己),谁最后离开?就算我们遍布整个宇宙,难道我们就不会重蹈覆辙吗?或者,在后来发现,老问题依然如影随形吗?我们种族在地球上的命运,我们种族在银河系中的命运,看起来有着解不开的关联。
Another idea is to erect a series of shields to defend against each of the dangerous technologies. The Strategic Defense Initiative, proposed by the Reagan administration, was an attempt to design such a shield against the threat of a nuclear attack from the Soviet Union. But as Arthur C. Clarke, who was privy to discussions about the project, observed: “Though it might be possible, at vast expense, to construct local defense systems that would ‘only’ let through a few percent of ballistic missiles, the much touted idea of a national umbrella was nonsense. Luis Alvarez, perhaps the greatest experimental physicist of this century, remarked to me that the advocates of such schemes were ‘very bright guys with no common sense.’”
另外一种想法是建立一系列防线来对抗每一种危险的科技。由里根政府提议建造的战略防御计划就是建立一条对付苏联核打击的防线的一个尝试。但知情人Arthur C-Clarke认为:“假设耗费巨资真能建立起区域防御系统,只要它漏过了很少部分的部分的弹道导弹,国家保护伞的touted就毫无意义。”路易斯-Alvavrz可能是本世纪最伟大的实验物理学家,对我形容这些计划的拥护者是一些“没常识的聪明人”。
Clarke continued: “Looking into my often cloudy crystal ball, I suspect that a total defense might indeed be possible in a century or so. But the technology involved would produce, as a by-product, weapons so terrible that no one would bother with anything as primitive as ballistic missiles.” 10
克拉克接下来说道:“盯着我们云翻雾扰的水晶球,我猜想整体防御武器会在一个世纪内成为现实。但同时,其所防御的对象却能象日用品一样从流水线上源源不断地走下来,它们早如此恐怖,以至于我们根本不会为此感到烦恼,就象原始人对弹道导弹毫无感受一样。”
In Engines of Creation, Eric Drexler proposed that we build an active nanotechnological shield—a form of immune system for the biosphere—to defend against dangerous replicators of all kinds that might escape from laboratories or otherwise be maliciously created. But the shield he proposed would itself be extremely dangerous—nothing could prevent it from developing autoimmune problems and attacking the biosphere itself. 11
在《创造的引擎》一书中,EricDrexler提议我们为生物圈建立一条基于纳米技术的防线,一种免疫系统,以此来防御所有可能从实验室中逃出的危险复制者。但他建议的防线自身也是极其危险的,没有什么能防止它产生发展过度而摧毁生物圈。
Similar difficulties apply to the construction of shields against robotics and genetic engineering. These technologies are too powerful to be shielded against in the time frame of interest; even if it were possible to implement defensive shields, the side effects of their development would be at least as dangerous as the technologies we are trying to protect against.
类似的困难也存在于建立对付机器人技术或基因技术的防线中。这些技术的威力过于强大而难于在有限的时间内加以防御。就算我们有可能能建立这样一条防线,开发其技术的副作用就象我们极力防御的技术一样危险。
These possibilities are all thus either undesirable or unachievable or both. The only realistic alternative I see is relinquishment: to limit development of the technologies that are too dangerous, by limiting our pursuit of certain kinds of knowledge.
以上可能发生的事情要不是我们极力反对的,要不就是我们不能完成的,或者两者皆是。在我看来,唯一现实的选择就是放弃、限制那些太过危险的技术研发,限制我们对此类知识的追求。
Yes, I know, knowledge is good, as is the search for new truths. We have been seeking knowledge since ancient times. Aristotle opened his Metaphysics with the simple statement: “All men by nature desire to know.” We have, as a bedrock value in our society, long agreed on the value of open access to information, and recognize the problems that arise with attempts to restrict access to and development of knowledge. In recent times, we have come to revere scientific knowledge.
是的,我的确知道知识有助于我们,特别是发现真理的探索。我们从远古时代就开始寻找知道。亚里士多德在其《形而上学》中开篇明义:“人天生求知。”作为我们社会的根本价值,我们对信息获取的知道,并认识到尝度限制获取发展知识所引起的种种问题。在近代,我们开始崇拜科学知识。
But despite the strong historical precedents, if open access to and unlimited development of knowledge henceforth puts us all in clear danger of extinction, then common sense demands that we reexamine even these basic, long-held beliefs.
但是,忽视有力的历史教训,允许自己获取并无限制发展知识,就会使我们陷入物种灭绝的境地,而常识要求我们再次检验甚至很基本的、长久以来奉为圭杲的信念。
It was Nietzsche who warned us, at the end of the 19th century, not only that God is dead but that “faith in science, which after all exists undeniably, cannot owe its origin to a calculus of utility; it must have originated in spite of the fact that the disutility and dangerousness of the ‘will to truth,’ of ‘truth at any price’ is proved to it constantly.” It is this further danger that we now fully face—the consequences of our truth-seeking. The truth that science seeks can certainly be considered a dangerous substitute for God if it is likely to lead to our extinction.
这是尼采在19世纪末告诫我们的,不仅上帝死了,而且对科学的信任,必竟不可否认地存在着,不能—-的起源到应用微积分学,它必须起源于对追求真理的意愿,不顾众多危险的事实。“Truthat any price”的无用与危险已经不断被证实。这是我们现在完全而对的未来的危险。我们追寻真理的结果。如果科学技术追求的真理会使我们亡族灭种,那它就可以被看作危险的“新上帝”。
If we could agree, as a species, what we wanted, where we were headed, and why, then we would make our future much less dangerous—then we might understand what we can and should relinquish. Otherwise, we can easily imagine an arms race developing over GNR technologies, as it did with the NBC technologies in the 20th century. This is perhaps the greatest risk, for once such a race begins, it’s very hard to end it. This time—unlike during the Manhattan Project—we aren’t in a war, facing an implacable enemy that is threatening our civilization; we are driven, instead, by our habits, our desires, our economic system, and our competitive need to know.
如果我们同意,作为一个物种,我们需要什么?为什么需要它们?我们向哪里进发?为什么是那里?我们才能使我们的未来远离危险,然后我们才有可能知道我能或应当放弃些什么?另外,我们能很容易地开始基于GNR技术的军备竞赛,正如在20世纪进行的基于NBC技术的军备竞赛。一旦这样的军备竞赛开始,就非常难于停下,这可能是最危险的冒险。我们需要知道,此时此刻,只是我们的恶习、我们的欲望、我们的经济体系,我们的竞争在驱使着我们,而不是象二战时的曼哈顿计划,那时我们面临着不共戴天的敌人对我们文明的致命威胁。
I believe that we all wish our course could be determined by our collective values, ethics, and morals. If we had gained more collective wisdom over the past few thousand years, then a dialogue to this end would be more practical, and the incredible powers we are about to unleash would not be nearly so troubling.
我相信我们都希望我们的共同价值观、道德能决定我们的所作所为。如果我们在过去数千年间已经获得了更多的团体智慧,那么对人类的结局展开对话就更加现实,并且我们解除威力难于置信的危险的行动看起来就不象我们想象的那样麻烦。
One would think we might be driven to such a dialogue by our instinct for self-preservation. Individuals clearly have this desire, yet as a species our behavior seems to be not in our favor. In dealing with the nuclear threat, we often spoke dishonestly to ourselves and to each other, thereby greatly increasing the risks. Whether this was politically motivated, or because we chose not to think ahead, or because when faced with such grave threats we acted irrationally out of fear, I do not know, but it does not bode well.
人们可能会想我是出于自我保存的本能而进行这样的对话。很明显,一个人有这样的欲望,然而作为一个物种,我们的行为看上去不象是由我们的好恶所决定。在处理核武器的威胁时,我们经常对自己、对别人撒下弥天大谎,因此使我们面临更大的风险。无论是出于政治动机,或者是因为我们不想多费脑筋,抑或是因为面对如此严重的威胁我们惊慌失措。真正的原因我可能永远不会知道,但这确实不是个好的先例。
The new Pandora’s boxes of genetics, nanotechnology, and robotics are almost open, yet we seem hardly to have noticed. Ideas can’t be put back in a box; unlike uranium or plutonium, they don’t need to be mined and refined, and they can be freely copied. Once they are out, they are out. Churchill remarked, in a famous left-handed compliment, that the American people and their leaders “invariably do the right thing, after they have examined every other alternative.” In this case, however, we must act more presciently, as to do the right thing only at last may be to lose the chance to do it at all.
新番多拉之盒:基因技术、纳米技术、机器人技术即将打开,但我们看上去还毫无查觉。一旦打开就很难关上盒子。不象铀或钚,它们不需要开采或提炼,它们能自由拷贝。一旦它们逃脱,它们就再无踪影。虽然是言不由衷的恭维话,丘吉尔强调这样一个事实:美国人民和他们的领导“在检验过每一条可能的道路之后,就会做出正确的决定。”而在这里,我们必须更有先见之明。我们只能做正确的事情,因为一次失误就会让我们全盘皆输。
As Thoreau said, “We do not ride on the railroad; it rides upon us”; and this is what we must fight, in our time. The question is, indeed, Which is to be master? Will we survive our technologies?
正如梭罗所说:“我们并不是在高速公路上驾车飞奔;而是被什么东西驾驭着。这个东西就是我们奋力反抗的。现在的问题是,到底谁是谁的主宰?我们能从自己所创造的技术手中幸免于难吗?”
We are being propelled into this new century with no plan, no control, no brakes. Have we already gone too far down the path to alter course? I don’t believe so, but we aren’t trying yet, and the last chance to assert control—the fail-safe point—is rapidly approaching. We have our first pet robots, as well as commercially available genetic engineering techniques, and our nanoscale techniques are advancing rapidly. While the development of these technologies proceeds through a number of steps, it isn’t necessarily the case—as happened in the Manhattan Project and the Trinity test—that the last step in proving a technology is large and hard. The breakthrough to wild self-replication in robotics, genetic engineering, or nanotechnology could come suddenly, reprising the surprise we felt when we learned of the cloning of a mammal.
我们正被推入到一个新世纪,没计划、没控制、没刹车。我们已经深陷泥潭了吗?虽然我并不是这样认为,但目前我们没有努力自救,最后用来确保我们能够走上正确道路的机会已经在快速远去。我们已经有了第一台宠物机器人,还拥有了用于商业用途的基因工程技术,并且纳米技术也进展很快。这些技术已经取得了很大进展,不象曼哈顿计划和三位一体核试验,我们不是非要完成最后的步骤,才能证明一项技术深邃而又艰难。在机器人技术、基因工程,或纳米技术中,自我复制的技术突破随时会到来。就象在哺乳动物克隆成功后,我们到那时又会大吃一惊。
And yet I believe we do have a strong and solid basis for hope. Our attempts to deal with weapons of mass destruction in the last century provide a shining example of relinquishment for us to consider: the unilateral US abandonment, without preconditions, of the development of biological weapons. This relinquishment stemmed from the realization that while it would take an enormous effort to create these terrible weapons, they could from then on easily be duplicated and fall into the hands of rogue nations or terrorist groups.
并且,我相信我们有对希望强烈而又持久的意愿。上个世纪,我们在处理大规模杀伤性武器上的尝试提供了一个光明的先例以供我们参考:美国在没有任何先决条件的情况下单方面放弃了生物武器的开发。这一行动来自于这样的现实状况:当费尽心机开发出恐怖的武器,却有可能被人很容易地复制并流入到无赖国家或恐怖组织手中。
The clear conclusion was that we would create additional threats to ourselves by pursuing these weapons, and that we would be more secure if we did not pursue them. We have embodied our relinquishment of biological and chemical weapons in the 1972 Biological Weapons Convention (BWC) and the 1993 Chemical Weapons Convention (CWC). 12
有一点很清楚:当我们紧随其后开发用以制造这些武器的技术时,就会给我们增加更大的威胁;而我们不这样干时,我们反而更安全。我们在1972年在生物武器协议上放弃生物武器,并在1993年的化学武器协议上放弃了化学武器。
As for the continuing sizable threat from nuclear weapons, which we have lived with now for more than 50 years, the US Senate’s recent rejection of the Comprehensive Test Ban Treaty makes it clear relinquishing nuclear weapons will not be politically easy. But we have a unique opportunity, with the end of the Cold War, to avert a multipolar arms race. Building on the BWC and CWC relinquishments, successful abolition of nuclear weapons could help us build toward a habit of relinquishing dangerous technologies. (Actually, by getting rid of all but 100 nuclear weapons worldwide—roughly the total destructive power of World War II and a considerably easier task—we could eliminate this extinction threat. 13
为保持相当大的与我们共存超过50年的核武器威慑力,美国参议院否决了《全面禁止核武器实验公约》,说明放弃核武器并不是一个简单的政治问题,但随着冷战的结束,我们还有一个独一无二的机会来避免多边军备竞赛。基于BWC和CWC对生物和化学武器的放弃,成功的废除核武器能帮助我们建立放弃危险技术的良好习惯(事实上,只要销毁世界范围内大约100件核武器,就大概相当于二战所有武器摧毁能力的总和,这应当是比较容易完成的任务,我们就能消除核武器对人类的威胁)。
Verifying relinquishment will be a difficult problem, but not an unsolvable one. We are fortunate to have already done a lot of relevant work in the context of the BWC and other treaties. Our major task will be to apply this to technologies that are naturally much more commercial than military. The substantial need here is for transparency, as difficulty of verification is directly proportional to the difficulty of distinguishing relinquished from legitimate activities.
事实证明,是否真正放弃危险技术将是件非常困难的任务,但并不是不能解决的问题。我们非常幸运,我们已经在BWC威胁存在的情况下成功完成了类似工作。我们的主要任务将是把以上经验应用到那些本为商业用途开发,但有可能用于军事的技术上。在这里最重要的是透明性。核查的困难程度与从合法的活动中甄别出需要放弃的内容的困难程序直接相关。
I frankly believe that the situation in 1945 was simpler than the one we now face: The nuclear technologies were reasonably separable into commercial and military uses, and monitoring was aided by the nature of atomic tests and the ease with which radioactivity could be measured. Research on military applications could be performed at national laboratories such as Los Alamos, with the results kept secret as long as possible.
坦白的说,我认为我们在1945年面临的情况比现在还要简单一些:核技术可以很容易地划分为商业与军事用途,可以藉由检测原子的自然特性来进行监控,并且很容易地测量出其辐射量。进行军事用途的研究必须在国家级的实验室中进行,比如洛斯阿拉莫斯,研究成果会尽可能的秘而不宣。
The GNR technologies do not divide clearly into commercial and military uses; given their potential in the market, it’s hard to imagine pursuing them only in national laboratories. With their widespread commercial pursuit, enforcing relinquishment will require a verification regime similar to that for biological weapons, but on an unprecedented scale. This, inevitably, will raise tensions between our individual privacy and desire for proprietary information, and the need for verification to protect us all. We will undoubtedly encounter strong resistance to this loss of privacy and freedom of action.
而GNR技术不能很清楚地划分为商业和军事用途;它们在商业市场上极具潜力,仅仅在国家级实验室中很跟踪其技术进度。由于它们有广泛的商业用途,需要一种类似对付生物武器的检测方法来强制某些机构放弃对GNR的研发。这一方法不可避免地在个人隐私、知识产权与保证我们全体社会成员的监察要求之间引发冲突。由于失去个人隐私与行动自由,这一方法毫无疑问会受到强烈的反对。
Verifying the relinquishment of certain GNR technologies will have to occur in cyberspace as well as at physical facilities. The critical issue will be to make the necessary transparency acceptable in a world of proprietary information, presumably by providing new forms of protection for intellectual property.
在验证放弃某些GNR技术时,必须同时在网络空间和实体设施中进行。关键问题将是如何在一个充满专有信息的世界中使必要的透明度变得可接受,可能是通过为知识产权提供新形式的保护。
Verifying compliance will also require that scientists and engineers adopt a strong code of ethical conduct, resembling the Hippocratic oath, and that they have the courage to whistleblow as necessary, even at high personal cost. This would answer the call—50 years after Hiroshima—by the Nobel laureate Hans Bethe, one of the most senior of the surviving members of the Manhattan Project, that all scientists “cease and desist from work creating, developing, improving, and manufacturing nuclear weapons and other weapons of potential mass destruction.” 14 In the 21st century, this requires vigilance and personal responsibility by those who would work on both NBC and GNR technologies to avoid implementing weapons of mass destruction and knowledge-enabled mass destruction.
监察工作需要科学家与工程师应用严格的伦理指导规范,即与希波克拉底誓言类似的规范,这样他们才有勇气在需要时举起红牌,甚至为此会出极高的个人代价。这将回应50年前广岛、长崎核爆之后由诺贝尔将得主汉斯-Bethe(曼哈顿计划资格最老的幸存者之一)的呼吁:“所有科学家放弃并停止创造、发展、改进及生产核武器和其他具有潜在大规模杀伤性能力的武器。”在21世纪,也就是要求那些正在研发NBC和GNR技术的人们加强个人责任并提高警惕,以避免大规模杀伤性武器和生产大规模杀伤性武器的知识泛滥于世界上。
Thoreau also said that we will be “rich in proportion to the number of things which we can afford to let alone.” We each seek to be happy, but it would seem worthwhile to question whether we need to take such a high risk of total destruction to gain yet more knowledge and yet more things; common sense says that there is a limit to our material needs—and that certain knowledge is too dangerous and is best forgone.、
梭罗还说道:“我们将会盲目到我们所能提供的数据之一。”我们每个人都在寻求快乐,但对此值得发出疑问:我们是否要冒全军覆灭的危险来攫取更多的知识或财富;我们的物质需求是有限有,这是尽人皆知的常识,并且我们都知道某些知识很危险,必须被放弃。
Neither should we pursue near immortality without considering the costs, without considering the commensurate increase in the risk of extinction. Immortality, while perhaps the original, is certainly not the only possible utopian dream.
我们不应当对这些危险的知识付出代价,不应当对与之同步增长的灭绝危险视而不见。不顾这一切而去追求永生不死。永生不死,也许是我们最初的乌托邦梦想之一,但肯定不是我们唯一的梦想。
I recently had the good fortune to meet the distinguished author and scholar Jacques Attali, whose book Lignes d’horizons ( Millennium, in the English translation) helped inspire the Java and Jini approach to the coming age of pervasive computing, as previously described in this magazine. In his new book Fraternités, Attali describes how our dreams of utopia have changed over time:
我最近有幸遇见了杰出的作者、学者Jacques-Attali,他的著作《Liqnes d’hoeizons》(《千僖年》)预选描述了即将到来的无所不在的计算,使我产生了把Java、Jini运用到这一领域的灵感。在他的新书《Fraternites》中,描绘了在过去的岁月中,我们的乌托邦之梦曾经经过了怎样的变迁:
“At the dawn of societies, men saw their passage on Earth as nothing more than a labyrinth of pain, at the end of which stood a door leading, via their death, to the company of gods and to Eternity. With the Hebrews and then the Greeks, some men dared free themselves from theological demands and dream of an ideal City where Liberty would flourish. Others, noting the evolution of the market society, understood that the liberty of some would entail the alienation of others, and they sought Equality.”
“在科学的萌芽期,人们认为他们在地球上的生活只是一座痛苦的迷宫,在其尽头耸立着死亡之门,通向上帝的宫殿,并进入来世。希伯莱人,还有后来的希腊人勇于从神的统治下解放自己,并梦想有一座充满自由的理想之城。另外一些人注意到了商业发展,他们明白一点点自由都会使人与人之间互相疏离,所以他们寻求的是平等”。
Jacques helped me understand how these three different utopian goals exist in tension in our society today. He goes on to describe a fourth utopia, Fraternity, whose foundation is altruism. Fraternity alone associates individual happiness with the happiness of others, affording the promise of self-sustainment.
Jacques使们明白了在我们今天的社会中这三种不同的乌托邦目的是如何相互冲突。他接下来描述了第四种乌托邦,建立在利他主义上的兄弟会。兄弟会把个人的快乐和其他人的快乐联系在一起,定下自助的誓言。
This crystallized for me my problem with Kurzweil’s dream. A technological approach to Eternity—near immortality through robotics—may not be the most desirable utopia, and its pursuit brings clear dangers. Maybe we should rethink our utopian choices.
这使我对库茨维尔的梦想的疑问更加具体化了。通过机器技术来使我们不朽,几乎永生不死的技术可能并不是我们最想要的乌托邦,并且这追求会带来明显的危险。也许我们该重新思考一下我们的乌托邦选择。
Where can we look for a new ethical basis to set our course? I have found the ideas in the book Ethics for the New Millennium, by the Dalai Lama, to be very helpful. As is perhaps well known but little heeded, the Dalai Lama argues that the most important thing is for us to conduct our lives with love and compassion for others, and that our societies need to develop a stronger notion of universal responsibility and of our interdependency; he proposes a standard of positive ethical conduct for individuals and societies that seems consonant with Attali’s Fraternity utopia.
我们能在哪里发现新的伦理基础来设定前进路线?在达赖喇嘛的著作《新千年的道德》中找到了对我极有启发的灵感。有一点可能广为人知,却少有人特别关注:达赖认为对我们而言,最重要的事情是用对他人的关爱与怜悯来指导我们的生活,我们的社会需要发展出更加坚实的共同责任感和互相依赖的观念。他计划为个人及社会制订出看上去与Atatali的Friternity友爱乌托邦一致的绝对伦理教条。
The Dalai Lama further argues that we must understand what it is that makes people happy, and acknowledge the strong evidence that neither material progress nor the pursuit of the power of knowledge is the key—that there are limits to what science and the scientific pursuit alone can do.
达赖更进一步认为我们必须明白是什么是人们感到快乐,有明确的证据表明无论是物质进步还是对知识的追求都不是关键,只依靠科学及其追求所能做到的是有限的。
Our Western notion of happiness seems to come from the Greeks, who defined it as “the exercise of vital powers along lines of excellence in a life affording them scope.” 15
我们西方的快乐观念来自于古希腊,定义为“在有限的生命中以充满活力的活动竭力追求卓越。”
Clearly, we need to find meaningful challenges and sufficient scope in our lives if we are to be happy in whatever is to come. But I believe we must find alternative outlets for our creative forces, beyond the culture of perpetual economic growth; this growth has largely been a blessing for several hundred years, but it has not brought us unalloyed happiness, and we must now choose between the pursuit of unrestricted and undirected growth through science and technology and the clear accompanying dangers.
很明显,我们需要在我产的生命中找到值得去做的的挑战和足够的生存空间与时间,如果我们在无论什么条件下都要寻求快乐的话。但我相信我们必须寻求另外一条道路来发泄我们的创造激情,超越不断的经济增长;这种增长已经极大地造福于我们几个世纪之久,但它并不能给我们带来真正的快乐,我们现在必须在通过科学技术产生的无约束、无方向的增长追求和与之相伴而来的明显的危险之间作出选择。
It is now more than a year since my first encounter with Ray Kurzweil and John Searle. I see around me cause for hope in the voices for caution and relinquishment and in those people I have discovered who are as concerned as I am about our current predicament. I feel, too, a deepened sense of personal responsibility—not for the work I have already done, but for the work that I might yet do, at the confluence of the sciences.
自从我与库茨维尔、约翰-Searle相会以来已经一年多了。我环视四周,在那些我发现他们曾经和我一样关注我们的困境的人们发妯的要求慎重考虑并放弃危险科技的呼吁声中,我又有了希望。在我的科研经历中,我同时也感受到个人责任的重大意义,不是对我曾经从事的工作,而且是对我可能要去做的工作。
But many other people who know about the dangers still seem strangely silent. When pressed, they trot out the “this is nothing new” riposte—as if awareness of what could happen is response enough. They tell me, There are universities filled with bioethicists who study this stuff all day long. They say, All this has been written about before, and by experts. They complain, Your worries and your arguments are already old hat.
但许多人明知某些科技的危险性却仍然保持沉默,当你逼问时,他们只是故作高深地说上一句“这没什么新鲜的”来敷衍了事,就好象只关心一下可能会发生什么就足够了。他们告诉我,大学里到处都是研究此类玩意的生物伦理学家,你提到的那些东西早已经书架蒙尘了,并且都还是大师之作,你所担心的、所争论的已是老生常谈。
I don’t know where these people hide their fear. As an architect of complex systems I enter this arena as a generalist. But should this diminish my concerns? I am aware of how much has been written about, talked about, and lectured about so authoritatively. But does this mean it has reached people? Does this mean we can discount the dangers before us?
我不知道这些人把他们的恐惧藏在何处。作为复杂系统的设计师,我是作一名多面手进入这个领域。但这应当减少我的忧虑吗?我深知怎样被如此权威地论述、讨论、演讲时提到,但这就意味着这些危险已经传达给人们了吗?这就意味着我们能减少我们面临的危险了吗?
Knowing is not a rationale for not acting. Can we doubt that knowledge has become a weapon we wield against ourselves?
知而不为是不恰当的。我们能怀疑知识已经成为我们对会自己的武器了吗?
The experiences of the atomic scientists clearly show the need to take personal responsibility, the danger that things will move too fast, and the way in which a process can take on a life of its own. We can, as they did, create insurmountable problems in almost no time flat. We must do more thinking up front if we are not to be similarly surprised and shocked by the consequences of our inventions.
原子物理学家的经验已经清楚地表明需要对太快增长的危险、对那些能甩开人类独自发展的技术方法负起个人责任。我们能,就象某些人曾经做过的那样,创造出没有时间来铲除的不可克服的问题。如果我们不想我们的发明产生的后果产生类似的惊讶与震撼,我们必须要三思而后行。
My continuing professional work is on improving the reliability of software. Software is a tool, and as a toolbuilder I must struggle with the uses to which the tools I make are put. I have always believed that making software more reliable, given its many uses, will make the world a safer and better place; if I were to come to believe the opposite, then I would be morally obligated to stop this work. I can now imagine such a day may come.
在我的职业生涯中,我一直致力于提高软件的可靠性。软件只是个工具,并且作为工具的建造者,我必须与我创造出的工具应用到的用途斗争。我曾经相信使软件可靠性更高、用途更广,将会使这个世界更加安全与美好,如果我开始与之相反的信念,我就会用道德上的义务来终止我的工作,我现在能想象到这样一天终会到来。
This all leaves me not angry but at least a bit melancholic. Henceforth, for me, progress will be somewhat bittersweet.
当这些都离我而去,虽然我不会怒气冲天,至少也有一丝忧郁。从此以后,科技进步将会叫人患得患失。
Do you remember the beautiful penultimate scene in Manhattan where Woody Allen is lying on his couch and talking into a tape recorder? He is writing a short story about people who are creating unnecessary, neurotic problems for themselves, because it keeps them from dealing with more unsolvable, terrifying problems about the universe.
不知你是否记得在电影《曼哈顿》中的漂亮的倒数第二个场景:伍迪-艾伦躺在长椅上对着录音机口述。他正在写一个短篇故事,讲述了为自己造成了不必要的、神经质的问题的人们,因为他们要从自己宇宙中不可能解决的、可怕的问题中解脱出来。
He leads himself to the question, “Why is life worth living?” and to consider what makes it worthwhile for him: Groucho Marx, Willie Mays, the second movement of the Jupiter Symphony, Louis Armstrong’s recording of “Potato Head Blues,” Swedish movies, Flaubert’s Sentimental Education, Marlon Brando, Frank Sinatra, the apples and pears by Cézanne, the crabs at Sam Wo’s, and, finally, the showstopper: his love Tracy’s face.
他给自己提出了一个问题:“为什么生命是值得度过?”并且对他而言,考虑到底是什么使得生命值得度过:Grocho Max、Willis Mays、Jupiter交响曲的第二章、路易斯-阿姆斯特朗的唱片《Potato Head Blues》、瑞典电影、福楼拜的《情感教育》、马龙·白兰度、弗兰克·辛纳屈、塞尚的苹果和梨、Sam Wo的螃蟹,还有最后被精彩掌声打断的:他的至爱—Tracy的颜。
Each of us has our precious things, and as we care for them we locate the essence of our humanity. In the end, it is because of our great capacity for caring that I remain optimistic we will confront the dangerous issues now before us.
我们每个人都有自己心爱的事物。我们关心它们,并把最基本的人性投注到它们身上。最后,我们仍保持乐观,因为我们有能力付出关爱,我们终会反抗我们现在面临的危险。
My immediate hope is to participate in a much larger discussion of the issues raised here, with people from many different backgrounds, in settings not predisposed to fear or favor technology for its own sake.
我现在的愿望与来自不同背景的们一与参与关于目前问题的更为广泛的讨论,而不事先基于某种原因假设人们害怕或喜爱技术发展。
As a start, I have twice raised many of these issues at events sponsored by the Aspen Institute and have separately proposed that the American Academy of Arts and Sciences take them up as an extension of its work with the Pugwash Conferences. (These have been held since 1957 to discuss arms control, especially of nuclear weapons, and to formulate workable policies.)
作为开端,我曾经两次在Aspen研究所发起的会议上提出这类问题,并且分别建议对美国艺术与科学学院和Pug Wash会议,把它们纳入自己的工作范围。(自从1957年开始探讨军备控制,特别是核武器,它们就召开了,并制定了可行的政策。)
It’s unfortunate that the Pugwash meetings started only well after the nuclear genie was out of the bottle—roughly 15 years too late. We are also getting a belated start on seriously addressing the issues around 21st-century technologies—the prevention of knowledge-enabled mass destruction—and further delay seems unacceptable.
非常不幸的是,PugWash会议在核武之魔逃出瓶中几乎15年后才开始召开。我们也可能在解决21世纪技术带来的防止知识产生的大规模杀伤性武器问题上动手太迟,如果再不开始行动,就会大势已去,一切就会太晚。
So I’m still searching; there are many more things to learn. Whether we are to succeed or fail, to survive or fall victim to these technologies, is not yet decided. I’m up late again—it’s almost 6 am. I’m trying to imagine some better answers, to break the spell and free them from the stone.
所以我仍在不停地探索,我有很多东西要来学习,无论我成功或失败,幸免于难或成为这些技术的牺牲品,都不是命中注定的。我起床又晚了,这时大概是早上6点钟,我努力构想一些更好的答案,我努力打破石化咒语,把我们的回答解释出来。
The passage Kurzweil quotes is from Kaczynski’s Unabomber Manifesto, which was published jointly, under duress, by The New York Times and The Washington Post to attempt to bring his campaign of terror to an end. I agree with David Gelernter, who said about their decision:
“It was a tough call for the newspapers. To say yes would be giving in to terrorism, and for all they knew he was lying anyway. On the other hand, to say yes might stop the killing. There was also a chance that someone would read the tract and get a hunch about the author; and that is exactly what happened. The suspect’s brother read it, and it rang a bell.
“I would have told them not to publish. I’m glad they didn’t ask me. I guess.”
( Drawing Life: Surviving the Unabomber. Free Press, 1997: 120.)
Garrett, Laurie. The Coming Plague: Newly Emerging Diseases in a World Out of Balance. Penguin, 1994: 47-52, 414, 419, 452.
Isaac Asimov described what became the most famous view of ethical rules for robot behavior in his book I, Robot in 1950, in his Three Laws of Robotics: 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm. 2. A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law. 3. A robot must protect its own existence, as long as such protection does not conflict with the First or Second Law.
Michelangelo wrote a sonnet that begins:
Non ha l’ ottimo artista alcun concetto
Ch’ un marmo solo in sè non circonscriva
Col suo soverchio; e solo a quello arriva
La man che ubbidisce all’ intelleto.Stone translates this as:
The best of artists hath no thought to show
which the rough stone in its superfluous shell
doth not include; to break the marble spell
is all the hand that serves the brain can do.Stone describes the process: “He was not working from his drawings or clay models; they had all been put away. He was carving from the images in his mind. His eyes and hands knew where every line, curve, mass must emerge, and at what depth in the heart of the stone to create the low relief.”
(The Agony and the Ecstasy. Doubleday, 1961: 6, 144.)
First Foresight Conference on Nanotechnology in October 1989, a talk titled “The Future of Computation.” Published in Crandall, B. C. and James Lewis, editors. Nanotechnology: Research and Perspectives. MIT Press, 1992: 269.
In his 1963 novel Cat’s Cradle, Kurt Vonnegut imagined a gray-goo-like accident where a form of ice called ice-nine, which becomes solid at a much higher temperature, freezes the oceans.
Kauffman, Stuart. “Self-replication: Even Peptides Do It.” Nature, 382, August 8, 1996: 496.
Else, Jon. The Day After Trinity: J. Robert Oppenheimer and The Atomic Bomb.
This estimate is in Leslie’s book The End of the World: The Science and Ethics of Human Extinction, where he notes that the probability of extinction is substantially higher if we accept Brandon Carter’s Doomsday Argument, which is, briefly, that “we ought to have some reluctance to believe that we are very exceptionally early, for instance in the earliest 0.001 percent, among all humans who will ever have lived. This would be some reason for thinking that humankind will not survive for many more centuries, let alone colonize the galaxy. Carter’s doomsday argument doesn’t generate any risk estimates just by itself. It is an argument for revising the estimates which we generate when we consider various possible dangers.” (Routledge, 1996: 1, 3, 145.)
Clarke, Arthur C. “Presidents, Experts, and Asteroids.” Science, June 5, 1998. Reprinted as “Science and Society” in Greetings, Carbon-Based Bipeds! Collected Essays, 1934-1998. St. Martin’s Press, 1999: 526.
And, as David Forrest suggests in his paper “Regulating Nanotechnology Development,” “If we used strict liability as an alternative to regulation it would be impossible for any developer to internalize the cost of the risk (destruction of the biosphere), so theoretically the activity of developing nanotechnology should never be undertaken.” Forrest’s analysis leaves us with only government regulation to protect us—not a comforting thought.
Meselson, Matthew. “The Problem of Biological Weapons.” Presentation to the 1,818th Stated Meeting of the American Academy of Arts and Sciences, January 13, 1999.
Doty, Paul. “The Forgotten Menace: Nuclear Weapons Stockpiles Still Represent the Biggest Threat to Civilization.” Nature, 402, December 9, 1999: 583.
See also Hans Bethe’s 1997 letter to President Clinton.
Hamilton, Edith. The Greek Way. W. W. Norton & Co., 1942: 35.